
Chris Krycho – StaffPlus New York 2024

Engineering Foundations in a World of LLMs

Substrate Engineering

Who do you trust to write memory- and thread-safe code in C?

Substrate Engineering

— Yourself?

— A new junior on your team?

— GitHub Copilot?

Who do you trust to write memory- and thread-safe code in (safe) Rust?

Substrate Engineering

— Yourself?

— A new junior on your team?

— GitHub Copilot?

Our systems are not ready for
a world of pervasive LLMs.

If you are a big fan of LLMs:
this talk is about making them better.

6

If you are skeptical of LLMs:
this talk is about good safeguards.

7

An emerging discipline?

Prompt engineering

— Specific choices in wording.

— The amount of context to include.

— The scope of the task you are giving it.

— Creativity levels.

— What not to bother with because it tends to go sideways there.

— Meta prompts, like my favorite: including “no blabbing”.

8

Problem
LLMs have been trained on real-world code.

Prompt engineering is not enough.

10

Prompt engineering will never be enough.

11

Why?

A substrate is a layer that sits below the
thing we are interested in.

Biolog

Substrates

— Where an organism grows

— Possibly what it eats

— Where it lives

Photo by Neringa Hünnefeld on Unsplash

Everything about its existence!

https://unsplash.com/@neringa_h_feld
https://unsplash.com/photos/orange-and-black-bug-on-green-leaf-szB0t0I1FLA

Chip manufacturing

Substrates

Silicon wafer: “does nothing”.

But no wafer? No useful chip.

Photo by Laura Ockel on Unsplash

https://unsplash.com/@viazavier
https://unsplash.com/photos/black-and-white-labeled-box-RoZWxeFL27k

Large language models

Substrates

— Training data (input)

— Engineering systems (output)

Automation and Attention

Photo by Fabio Romano on Unsplash Photo by Roberto Nickson on Unsplash

Automation and Attention

https://unsplash.com/@faburomano
https://unsplash.com/photos/a-view-of-the-cockpit-of-an-airplane-from-the-inside-6E3BVc2ks98
https://unsplash.com/@rpnickson
https://unsplash.com/photos/interior-view-of-tesla-car-Ddjl0Cicdr4

The better automation works,
the less we attend to it.

Photo by Fabio Romano on Unsplash Photo by Roberto Nickson on Unsplash

Automation and Attention

https://unsplash.com/@faburomano
https://unsplash.com/photos/a-view-of-the-cockpit-of-an-airplane-from-the-inside-6E3BVc2ks98
https://unsplash.com/@rpnickson
https://unsplash.com/photos/interior-view-of-tesla-car-Ddjl0Cicdr4

Challenge
Code review and debugging

The better LLMs get—
the more they boost velocity,
by generating working code—

the harder it will be to notice when
they get things wrong.

What do we do?

Automation and attention

— “Defense in depth” for software foundations

What do we do?

Automation and attention

— “Defense in depth” for software foundations

— Judgment about where LLMs should and should not be allowed

Problem
Hallucination

Hallucination is not a solvable problem.

Hallucination is the wrong word.

Hallucination is just what LLMs are.

We can (and must) build our
software and social systems accordingly.

29

Substrate Engineering

30

Key constraints

Substrate Engineering

— Substrate/environment

— Automation and attention

— How LLMs actually work

31

The territory

Substrate Engineering

— Tooling and Configuration

— Languages

— API design

— Testing

— Agents

— Package managers

— Operating systems
32

The territory we have time to cover

Substrate Engineering

— Tooling and Configuration

33

Tooling and Configuration

a disproportionate impact on
user & developer experience

35

Tooling and Configuration

Now add LLMs into the mix.

Tooling and Configuration

These kinds of tools and configuration languages are:

— Extremely amenable to use with LLM-based systems

— Extremely vulnerable to the failure modes of LLMs

Now add LLMs into the mix.

Tooling and Configuration

These kinds of tools and configuration languages are:

— Extremely amenable to use with LLM-based systems

— Extremely vulnerable to the failure modes of LLMs

Now add LLMs into the mix.

Tooling and Configuration

These kinds of tools and configuration languages are:

— Extremely amenable to use with LLM-based systems

— Extremely vulnerable to the failure modes of LLMs

A broken GitHub Actions config

Tooling and Configuration

jobs:
 - name: Test
 runs-on: ubuntu-latest
 steps:
 - name: Check out repository code
 uses: actions/checkout@v4
 - run: make test
on: [push, release]

A broken GitHub Actions config

Tooling and Configuration

jobs:
 - name: Test
 runs-on: ubuntu-latest
 steps:
 - name: Check out repository code
 uses: actions/checkout@v4
 - run: make test
on: [push, release]

> "jobs" section is sequence node but mapping node is expected

A fixed GitHub Actions config

Tooling and Configuration

jobs:
 Test:
 runs-on: ubuntu-latest
 steps:
 - name: Check out repository code
 uses: actions/checkout@v4
 - run: make test
on: [push, release]

A broken GitHub Actions config

Tooling and Configuration

jobs:
 - name: Test
 runs-on: ubuntu-latest
 steps:
 - name: Check out repository code
 uses: actions/checkout@v4
 - run: make test
on: [push, release]

> "jobs" section is sequence node but mapping node is expected

Investing in ops languages

Tooling and Configuration

— Pulumi: TS, Python, .NET, Java, Go

— F♯’s FAKE DSL

…unlocks the power and tooling of “full” programming languages.

Problem
“Full” programming languages can do anything.

Investing in ops languages

Tooling and Configuration

— Infinite loops during installation

— undefined is not a function during deployment

— Throwing java.lang.NullPointerException in CI

Investing in ops languages: useful properties

Tooling and Configuration

— Soundness:

— no undefined is not a function

— no NullPointerExceptions

Investing in ops languages: useful properties

Tooling and Configuration

— Soundness

— Termination: guaranteeing the program will end

Investing in ops languages: useful properties

Tooling and Configuration

— Soundness

— Termination: guaranteeing the program will end

— totality: every input has an output, even things like n/0

— purity: same input = same output, no side effects

— no general recursion: no while (true) { … } or equivalents.

Investing in ops languages: useful properties

Tooling and Configuration

— Soundness

— Termination

— Rich type system

— Discriminated union/sum/algebraic data types
type Track = IndividualContributor | Manager

— Guaranteed inference

Investing in ops languages: useful properties

Tooling and Configuration

— Soundness

— Termination

— Rich type system (but not too rich)

— Discriminated union/sum/algebraic data types
type Track = IndividualContributor | Manager

— Guaranteed inference

Investing in ops languages: the wins

Tooling and Configuration

— Faster feedback loops for people writing configuration

— With or without LLMs!

— LLM training data would be much more correct

A much higher chance of getting it right from the outset.

Not a silver bullet.

But having the right tools in the toolbox matters.

Investing in ops languages: candidate languages

Tooling and Configuration

— Starlark (née Skylark): build language used by Bazel and Buck/Buck2
— Soundness
— Termination
— Rich type system (but not too rich)

🟥

🟧

🟥

Investing in ops languages: candidate languages

Tooling and Configuration

— Starlark (née Skylark): build language used by Bazel and Buck/Buck2
— Soundness
— Termination
— Rich type system (but not too rich)

— Dhall
— Soundness
— Termination
— Rich type system (but not too rich)

🟥

🟧

🟥

🟩

🟨

🟩

Investing in ops languages: candidate languages

Tooling and Configuration

— Starlark (née Skylark): build language used by Bazel and Buck/Buck2
— Soundness
— Termination
— Rich type system (but not too rich)

— Dhall
— Soundness
— Termination
— Rich type system (but not too rich)

🟥

🟧

🟥

🟩

🟨

🟩

Increasingly widely used

No one has heard of it

Investing in ops languages: more work needed!

Tooling and Configuration

What if we built a language like Starlark plus Dhall—familiar but robust?

— Does it work well in practice?

— What are the tradeoffs?

— Investigation needed!

Conclusion

56

Put all of our software engineering on
better foundations

Engineering foundations are the
substrates for all software engineering

I appreciate your attention.

Thank you!

— Read: chriskrycho.com

— Email: hello@chriskrycho.com

— Follow: (@)chriskrycho(.com)

— Calendly:

59

https://www.chriskrycho.com
mailto:hello@chriskrycho.com

