

Year 1 Year 2 Year 3

ﬁ GonzoHacker
J @GonzoHacker

There is no evidence of intrusion as we're not very good
about logging

12:56 AM - Apr 4, 2018 - Twitter Web Client

“Let’s make a product more secure...”

Security Chaos Engineering

- Security is a subset of resilience.

- Resilience is an emergent property of the entire system and cannot be
measured by only analyzing components.

- To create and assess systems, we make mental models of it,
cognitive representations of external reality.

OREILLY

_ Security Chaos
- Given a complex system to assess, how do we gather Engineering

. ? Sustaining Resilience in Software and Systems
requirements”

& Kelly Shortridge
with Aaron Rinehart

\o}
l I £ \\\ SE
OF DEFEN OMPUTER g
a d a rd S e et © < DEPARTMENT (] SECURTY REQUIREWEN T
\ {5} 3
: L

NT NCE FOR appy y,
AGEME NCE FOR appyy g
PASSWORD MAN: 3TED COMPyTER SYZHE‘DENRTMENT

oF
EM EVALy, DEFENS|

IN i~ ATION
\\ . snscmcsuvmomugms CRITERIA
N
GUIDEL!

NATIONAL COMPUTER SECURITY CENTER

uidelines

Y Centeg

1 NCSC.76.;
NCSC-TG-010 (me“ﬂ,
VERSION-1

NATIONAL COMPUTER SECURITY CENTER

NS 16,00,
VeRsion.,

L
=TG-
VeRsion 18

NCSC-70-004
VERSION-2

OMPUTER SECURITY CENTER

%

A GUIDE TO
UNDERSTANDING

AUDIT
N
TRUSTED SYSTEMS

(shows intent)

Compatibility with Engineering Culture

Usability

- Psychological safety

- Avoid adding friction

- Maintain pleasant culture

- Blameless

SecEng Toolset

- SAST: Static Application Security Testing

- SCA: Software Composition Analysis

- SBoM: Software Bill of Materials

- DAST: Dynamic AppSec Testing

- Secrets detection

- Pipeline scanning (incl. Cloud, lIaC, Containers, etc)
- Threat modeling

- Secure coding trainings

February 26,2024

it's unhackable!

BACK TO THE
BUILDING
BLOCKS:

A PATH TOWARD SECURE AND
MEASURABLE SOFTWARE

FEBRUARY 2024

“the current ecosystem does not sufficiently
the investments required to secure the
foundations of cyberspace”

1. Hardware
2. Formal Methods
3. Memory-Safe Programming Languages

2. Formal Methods
3. Memory-Safe Programming Languages

1. Hardware

3. Memory-Safe Programming Languages

Formal Methods
- Proving that a program behaves as intended.
- Create a mathematical model of the program.

- Some compilers and kernels have been formally verified.

Continuous Formal Verification
of Amazon s2n

Andrey Chudnov!, Nathan Collins!, Byron Cook®?, Joey Dodds!,
Brian Huffman®, Colm MacCérthaigh®, Stephen Magill'®™, Eric Mertens!,
Eric Mullen?, Serdar Tasiran®, Aaron Tomb!, and Eddy Westbrook!

1 Galois, Inc., Portland, USA
stephen@galois.com
2 University of Washington, Seattle, USA
3 Amazon Web Services, Seattle, USA
4 University College London, London, UK

Abstract. We describe formal verification of s2n, the open source TLS
implementation used in numerous Amazon services. A key aspect of this
proof infrastructure is continuous checking, to ensure that properties
remain proven during the lifetime of the software. At each change to the
code, proofs are automatically re-established with little to no interac-
tion from the developers. We describe the proof itself and the technical
decisions that enabled integration into development.

Limits of Formal Verification

- Prove that the binary is a correct implementation of the specification.

- See Ken Thompson’s “Reflections on Trusting Trust” (1984)

“No amount of source-level verification or scrutiny will protect you from using
untrusted code.*

https://users.ece.cmu.edu/~ganger/712.fall02/papers/p761-thompson.pdf

1. Hardware
2. Formal Methods

AW SSembyy
/ £ a0, Yage

Google Security Blog

The latest news and insights from Google on security and safety on the Internet

Improving Interoperability Between Rust and C++
February 5, 2024

Posted by Lars Bergstrom — Director, Android Platform Tools & Libraries and Chair of the Rust Foundation

Board

1996

4 June 1996
Kourou, French Guiana

24
X

b Kourou's facilities:

® 1 Tracking station of montagne des Péres
ATLAN TI C 2 Paracaibo wharf

OC EAN 3 Jupiter control center =2

4 Administration F i

5 Satellite preparation building (EPCU) . =
6 Tracking and weather station (Y
7 Satellite tracking station (ESA) @ A
8 Soyouz control center =
9 Soyouz integration building
10 Cinethéodolite of Royale island Salut island:

Soyouz integratio
and launch facilities

Launch area:

A Sounding rockets
B Diamant (decommissioned)

C Ariane 4 (ELA-2) (decommissioned)
D Ariane 5 (ELA-3)

Vega (ELV ex ELA-1 Ariane)

Adantic Ocean Guyane (France)
+ Prefecture . % . g
* Sbprebcure Decommissioned Ariane 4

S VII T
;‘:’é&..’;ffd,, e — T facilities

Ariane 5
integration and
launch facilities

Propellant plants andé
booster integration

D
® launch area KOUROU
[MIK buildings (acronym) . /’
" " 4
main road : o _'@)\\——"’
——————— secondary road TR Kouroy
railway track 2 =

BRAZIL

2 CENTRE SPATIAL GUYANAIS

0 km/hr
830 km/hr

1,275 km/hr

1,550 km/hr

1,650 km/hr

1,550 km/hr

1,275 km/hr

ARIANE 5

ARIANE 4

ARIANE 3

ARIANE 2

— - . ‘
L o TR

ARIANE 1

Cause of explosion:

Honorable self-destruct
(for safety)

L

g
VR
iy

Pak s
Vo atarer 3"

-

Sy rem ;ﬁ 3N _\"
W

5 R o B

B S e
8/ '

*@&\ﬁ

;gﬁem-msu&a‘

Samurai about to perform
seppuku

Inertial Reference System

Calibrates trajectory before liftoff

Moved as-is
onto the Ariane 5

Created & used
on the Ariane 4

o 5 - ' areun
e ood PRINCIPLE | e

The SRI defines a reference trinedron which is fixed with respect to the stars, called
the inertial trihedron within which it provides launcher attitude and velocity data

Gyrometers ' P

Attitude angles >b B d
h Boar

Computer

U

Velocity increments

I >
| z .|

Y

Accelerometers

Gyrometers are of the "gyrolaser” type

Directorate of
Launchers CNES501

Integer Overflow?

- Horizontal velocity: 64-bit float

- IRS buffer: 16-bit signed int

0

0

0

0

0

"excessive"— A

A

Iel

S

Veray ell, 1re 1rill mobilize our
arieies for WAR! Hou will poa for
your foolish pridel

PUIEL A~ . SR IN. ~ e+
1 - . i . M

trobilize our
r WACk! Hou will pey for
»_; y ?.I\.lie !l

Undefined Behavior

Loss of control flow.

- No idea what happens at runtime.

- Belief that it is the programmer’s responsibility to avoid UB.

- gcc and clang support gEEEERERI-tI T Y B! flag (not by default).

- E.g.: Overflows, memory safety violations, use of uninitialized auto var,
null ptr dereference, division by zero, etc.

C/C++

Strongly typed Pointer sorcery :(

Exception handling Undefined behavior

Boundary checks Up to developer

Name references a historical genius Name references the 3rd letter of the alphabet??

Language Unsigned Signed integer
integer

modulo the raise Constraint Error
type's modulus

modulo power undefined behavior
of two

*In C11, unsigned integer overflow is defined to wrap around, while signed integer
overflow causes undefined behavior.

ARIANE 5

ARIANE 4

Inertial Reference System

| have detected:

Time for: 4 Redundancy4

Goodbye! (shutdown)

Inertial Reference System & Inertial Reference System

(OFF) (Backup)

Inertial Reference System & Inertial Reference System

(OFF) (Backup)

| have detected:

Time for: {4 Redundancy 4

Goodbye! (shutdown)

Inertial Reference System & Inertial Reference System

(OFF) (Also OFF)

Flight Control System

79

112

101

114

current_speed = Operand_Error

97

110

100

95

69

114 114 111 114

current_speed =
791121011149711010095691141
14111114

Let’s tilt by uhh 90 degrees ish

current_speed =
791121011149711010095691141
14111114

hmmm...
bit fast innit?

self-destruct program

il
N

\ Operand_Error
[
\

EU’s smartest
rocket scientists

with

$7 Billion in funding

| have found 7 potential
buffer or integer overflows

Static analysis tool in the IRS.

>junit</,
>junit</

it i--"“'d"-,'-l

e

A\ SAST is not a comprehensive security review £\

How SAST Works

All code has vulnerabilities

- SAST analyzes code line by line (instrumentation optional)

- Flags lines with potential issues

- Many different categories of findings

- Empower developers to address findings

Example: Cryptography misconfiguration

Cipher.getinstance("AES/ " /NoPadding"); Cipher.getinstance("AES/GCM/NoPadding");

), s

But it depends on use case!
e.g. should you be hashing instead?

Triaging Security Findings

- Devise triage heuristics to deliver meaningful
findings

- Tweak tool config

- Combine findings by category & remediation

Send your devs 86,547 untriaged findings

s

<

Tools should be configured to flag
what we want to look for!

- Target max CPU util: 80%

- Read docs and comments
We’re writing Ada not C
Meetings with partners
Checked assumptions

We have fixed 4 potential
buffer/integer overflows
in the IRS.

The other 3 will never overflow.

®

MC68020RC16B
2ATONBTYY

Motorola 68020 (Ariane 5) Apple A16 Bionic (iPhone 14)

Up to 33 MHz Up to 3.46 GHz

STAND BACKEVERYONE!
£ .

{
.

A f ' = \

(i * i

Exception Handling Specification
1. Log the exception
2. Store itin EEPROM

3. SHUT THE HARDWARE DOWN

Design Assumptions
1. Assuming random hardware failures, backup should handle the rest.

2. Unless proven necessary, it was not wise to make changes in software which
worked well on Ariane 4.

Inertial Reference System

Calibrates trajectory liftoff

Moved as-is
onto the Ariane 5

Created & used
on the Ariane 4

Does not need it to

Needs it running for
be running at all...

40 seconds.

“Just sim it”

Expensive to test IRS, needs dedicated hardware.

They built dedicated hardware.

Injected realistic trajectory details in test.

It caught the bug!

3.2 CAUSE OF THE FAILURE

“The failure of the Ariane 501 was caused by the complete loss of guidance and attitude
information 37 seconds after start of the main engine ignition sequence (30 seconds after lift-
off). This loss of information was due to specification and design errors in the software of
the inertial reference system.

The extensive reviews and tests carried out during the Ariane 5 Development Programme did
not include adequate analysis and testing of the inertial reference system or of the
complete flight control system, which could have detected the potential failure.”

https://www-users.cse.umn.edu/~arnold/disasters/ariane5rep.html

https://www-users.cse.umn.edu/~arnold/disasters/ariane5rep.html

“The exception which occurred was not due to random failure
but a design error.

The exception was detected, but inappropriately handled
because the view had been taken that software should be
considered correct until it is shown to be at fault.”

“The Board is in favour of the opposite view, that software
should be assumed to be faulty until applying the
currently accepted best practice methods can
demonstrate that it is correct.”

“The Board is in favour of the opposite view, that software
should be assumed to be faulty until applying the

currently accepted best practice methods can
demonstrate that it is correct)’

how?

Ariane 5 total launches

- 117 launches between 1996 and 2023.

- 1 failed launch due to software.

— 99.14% success rate for its software.

Ariane 5 containing the James
Webb Space Telescope lifting-off
from the launch pad

What triggered the failure?

- Wrong design decisions

- Undocumented assumptions
- Software reuse

- Unnecessary legacy code

- Lack of testing

- Mishandled exceptions

- Integer overflow

H+

H+

- Does a program halt?

- Is a program secure?

Limits of Formal Verification

Kurt Godel’s incompleteness theorems:

- Undecidable statements: neither provable nor refutable in the system.
- No mathematical system can prove itself free of contradictions.

Turing’s halting problem:

- Determining if any program halts on any input is undecidable.

C++ yes
Rust yes
Ada yes
Python yes
Ruby yes
C yes
Zig yes
Java yes
Go yes
2?77

yes

Synopsis

R

- document assumptions

-

e R ;
» I

- validate them with tests

5

- might still explode, its ok

-+
¥
;
[t

