

 Year 1 Year 2 Year 3

“Let’s make a product more secure…”

Security Chaos Engineering

- Security is a subset of resilience.

- Resilience is an emergent property of the entire system and cannot be
measured by only analyzing components.

- To create and assess systems, we make mental models of it,
cognitive representations of external reality.

- Given a complex system to assess, how do we gather
requirements?

Standards
&

Guidelines

(shows intent)

Compatibility with Engineering Culture

- Usability

- Psychological safety

- Avoid adding friction

- Maintain pleasant culture

- Blameless

SecEng Toolset

- SAST: Static Application Security Testing
- SCA: Software Composition Analysis
- SBoM: Software Bill of Materials
- DAST: Dynamic AppSec Testing
- Secrets detection
- Pipeline scanning (incl. Cloud, IaC, Containers, etc)
- Threat modeling
- Secure coding trainings

“the current ecosystem does not sufficiently
incentivize the investments required to secure the
foundations of cyberspace”

1. Hardware
2. Formal Methods
3. Memory-Safe Programming Languages

1. Hardware
2. Formal Methods
3. Memory-Safe Programming Languages

1. Hardware
2. Formal Methods
3. Memory-Safe Programming Languages

Formal Methods

- Proving that a program behaves as intended.

- Create a mathematical model of the program.

- Some compilers and kernels have been formally verified.

Limits of Formal Verification

- Prove that the binary is a correct implementation of the specification.

- See Ken Thompson’s “Reflections on Trusting Trust” (1984)

“No amount of source-level verification or scrutiny will protect you from using
untrusted code.“

https://users.ece.cmu.edu/~ganger/712.fall02/papers/p761-thompson.pdf

1. Hardware
2. Formal Methods
3. Memory-Safe Programming Languages

Cause of explosion:

Honorable self-destruct
(for safety)

Inertial Reference System

Created & used
on the Ariane 4

Moved as-is
onto the Ariane 5

Calibrates trajectory before liftoff

Integer Overflow?

- Horizontal velocity: 64-bit float

- IRS buffer: 16-bit signed int

Undefined Behavior

- Loss of control flow.

- No idea what happens at runtime.

- Belief that it is the programmer’s responsibility to avoid UB.

- gcc and clang support -fsanitize=undefined flag (not by default).

- E.g.: Overflows, memory safety violations, use of uninitialized auto var,
 null ptr dereference, division by zero, etc.

Ada C / C++

Strongly typed Pointer sorcery :(

Exception handling Undefined behavior

Boundary checks Up to developer

Name references a historical genius Name references the 3rd letter of the alphabet??

* In C11, unsigned integer overflow is defined to wrap around, while signed integer
overflow causes undefined behavior.

Language Unsigned
integer

Signed integer

Ada modulo the
type's modulus

raise Constraint_Error

C, C++ modulo power
of two

undefined behavior

Inertial Reference System

I have detected: Operand_Error

Time for: ✨Redundancy✨

Goodbye! (shutdown)

Inertial Reference System & Inertial Reference System
(OFF) (Backup)

Inertial Reference System & Inertial Reference System
(OFF) (Backup)

I have detected: Operand_Error

Time for: ✨Redundancy✨

Goodbye! (shutdown)

Inertial Reference System & Inertial Reference System
(OFF) (Also OFF)

Raise: Operand_Error

Flight Control System

current_speed = Operand_Error

O p e r a n d _ E r r o r

79 112 101 114 97 110 100 95 69 114 114 111 114

current_speed =
791121011149711010095691141

14111114

current_speed =
791121011149711010095691141

14111114

hmmm…
bit fast innit?

Let’s tilt by uhh 90 degrees ish

self-destruct program

MY TIME TO SHINE!!!!!

EU’s smartest
rocket scientists

with

$7 Billion in funding

Operand_Error

Static analysis tool

I have found 7 potential
buffer or integer overflows

in the IRS.

⚠SAST is not a comprehensive security review⚠

How SAST Works

- All code has vulnerabilities

- SAST analyzes code line by line (instrumentation optional)

- Flags lines with potential issues

- Many different categories of findings

- Empower developers to address findings

Example: Cryptography misconfiguration

Cipher.getInstance("AES/ECB/NoPadding"); Cipher.getInstance("AES/GCM/NoPadding");

👎 👍
But it depends on use case!
e.g. should you be hashing instead?

Triaging Security Findings

Send your devs 86,547 untriaged findings - Devise triage heuristics to deliver meaningful
findings

- Tweak tool config
- Combine findings by category & remediation

👎 👍
Tools should be configured to flag
what we want to look for!

We have fixed 4 potential
buffer/integer overflows

in the IRS.

The other 3 will never overflow.

- Target max CPU util: 80%
- Read docs and comments

- We’re writing Ada not C
- Meetings with partners
- Checked assumptions

Motorola 68020 (Ariane 5) Apple A16 Bionic (iPhone 14)

Up to 33 MHz Up to 3.46 GHz

Exception Handling Specification

1. Log the exception

2. Store it in EEPROM

3. SHUT THE HARDWARE DOWN

Design Assumptions

1. Assuming random hardware failures, backup should handle the rest.

2. Unless proven necessary, it was not wise to make changes in software which
worked well on Ariane 4.

Inertial Reference System

Created & used
on the Ariane 4

Moved as-is
onto the Ariane 5

Calibrates trajectory before liftoff

Needs it running for
40 seconds.

Does not need it to
be running at all…

“Just sim it”

- Expensive to test IRS, needs dedicated hardware.

- They built dedicated hardware.

- Injected realistic trajectory details in test.

- It caught the bug!

3.2 CAUSE OF THE FAILURE

“The failure of the Ariane 501 was caused by the complete loss of guidance and attitude
information 37 seconds after start of the main engine ignition sequence (30 seconds after lift-
off). This loss of information was due to specification and design errors in the software of
the inertial reference system.

The extensive reviews and tests carried out during the Ariane 5 Development Programme did
not include adequate analysis and testing of the inertial reference system or of the
complete flight control system, which could have detected the potential failure.”

https://www-users.cse.umn.edu/~arnold/disasters/ariane5rep.html

https://www-users.cse.umn.edu/~arnold/disasters/ariane5rep.html

“The exception which occurred was not due to random failure
but a design error.

The exception was detected, but inappropriately handled
because the view had been taken that software should be
considered correct until it is shown to be at fault.”

“The Board is in favour of the opposite view, that software
should be assumed to be faulty until applying the
currently accepted best practice methods can
demonstrate that it is correct.”

“The Board is in favour of the opposite view, that software
should be assumed to be faulty until applying the
currently accepted best practice methods can
demonstrate that it is correct.”

how?

Ariane 5 total launches

- 117 launches between 1996 and 2023.

- 1 failed launch due to software.

 → 99.14% success rate for its software.

What triggered the failure?

- Wrong design decisions
- Undocumented assumptions
- Software reuse
- Unnecessary legacy code
- Lack of testing
- Mishandled exceptions
- Integer overflow

- Does a program halt?

- Is a program secure?

Limits of Formal Verification

Kurt Gödel’s incompleteness theorems:

- Undecidable statements: neither provable nor refutable in the system.
- No mathematical system can prove itself free of contradictions.

Turing’s halting problem:

- Determining if any program halts on any input is undecidable.

1. Hardware
2. Formal Methods
3. Memory-Safe Programming Languages
4. Check Assumptions

Language Can I write secure code in it?

C++ yes

Rust yes

Ada yes

Python yes

Ruby yes

C yes

Zig yes

Java yes

Go yes

??? yes

Synopsis

- document assumptions

- validate them with tests

- might still explode, its ok

