How Al Coding Assistants

Improve Code Habitability
|

thoughtworks

How do we feel about
the code we ship today?

How do we feel about
the code we ship today?

Canwe set a higher bar?

Today we explore...

1. Why setting a higher bar matters
2. How code habitability helps set that bar

3. How Al coding assistants get us there

https://commons.wikimedia.org/wiki/File:Dick_Fosbury_at_the_1968_Olympic_trials.jpg

Paul Sobocinski

® 20 yrs full-stack
Software Engineer

Paul Sobocinski

B/ 20 yrs full-stack % Coaching Software @ 1.5 yrs exploring Al
Software Engineer Engineers & Tech Leads coding assistants

Why setting a higher bar matters

o can focus on
4 more satisfying
7 O work
& Software
Developers are 7 o/

. (very) favourable

GenAl tools
Our internal
NPS score
2 for GitHub Copilot

Sources: Stack Overflow Developer Survey (2024)
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

o of devs say
they're more
O productive
With GenAl,
it's never been Q/ s
. completion with
easler to O Al Coding Assistants

write code
O agree increased
1 productivity is
O biggest benefit

Sources: Stack Overflow Developer Survey (2024)
GitHub Next Survey (2024)

4 5 B Total contributions
on GitHub in 2023

e ’

Unprecedented ew projects

VOlume Of C()de started in 2023

being shipped
81% private repos activity
and growth rate
40%

Source: GitHub Octoverse Survey (2023)

80% of developers are not happy at their job.

62.4%

32.9%

Source: Stack Overflow Developer Survey (2024)

https://unsplash.com/@irzvn_?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/a-man-sitting-in-front-of-two-computer-monitors-Xn3D8DIzH7Q?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

80% of developers are not happy at their job.

32.9%

“Select

all that
32.3% apply”

31.5%

Source: Stack Overflow Developer Survey (2024)
Photo sources: Eatemeh Rezvani via Unsplash

https://unsplash.com/@irzvn_?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/a-man-sitting-in-front-of-two-computer-monitors-Xn3D8DIzH7Q?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/@irzvn_?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/a-man-sitting-in-front-of-two-computer-monitors-Xn3D8DIzH7Q?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://imgflip.com/memetemplate/274790543/single-worker-digging-hole

How code habitability helps set the bar

Habitability : Origins
L|vahle Code :

} =

@sarahmel

TesT
DeSIDERATR
&

The
Oregon Experiment

YOW!

CUPID g "
For Joyful Coding ¥

DANIEL TERHORST-NORTH

Habitability : Definition

Whatitis:

The characteristic of source code that enables [people] coming to the code
later in its life to understand its construction and intentions and to
change it comfortably and confidently.

What it does:

Habitability makes a [codebase] livable, like home. And this is what we want
in software — that developers feel at home, can place their hands on any
item without having to think deeply about where it is.

Richard Gabriel
Patterns of Software
1996

Effects of Low Habitability

Breaking Breaking Features take Changes take
changes are changes take longer to add much longer
likely longer to fix than predicted

Photos generated by Google Gemini

Low Habitability

Tests are:

Nonexistent
Confusing
Flakey

Slow

Low Habitability

Tests are: Implementation code has:

— Nonexistent — Ambiguous or misleading naming
— Confusing — Confusing structure or organization
— Flakey — Needless complexity

— Slow — Entangled* dependencies

* bi-directional, circular, unnecessary, etc.

High Habitability

Tests:

+

+
+
+

Pass or fail when they are meant to
Express what is being tested & why
Communicate the code's design

Exhibit established
design principles*

High Habitability

Tests:

+ Pass or fail when they are meant to
+ Express what is being tested & why
+ Communicate the code’s design
+

Exhibit established
design principles*

* Test Desiderata, Practical Test Pyramid, Use of TDD / BDD, etc.
** loose coupling, composable, dependency inversion, etc.
*** Four Rules of Simple Design, SOLID, CUPID, etc.

Implementation code:

+

+

Has intention-revealing
naming and structure

Is as simple as possible
Has manageable dependencies**

Exhibits established***
design principles

Habitability takeaways

Habitability applies to We can apply both
both codebases behaviours to the code

How Al coding assistants get us there...

DEMO

README [1 of 2]

We have inherited a URLShortener . Two public methods exist on the class:

README [1 of 2]

We have inherited a URLShortener . Two public methods exist on the class:

1. URLShortener.shorten (long url)

a. Given a full-length URL,
generate a shortened version of the URL, and
store the original URL in the DB

README [1 of 2]

We have inherited a URLShortener . Two public methods exist on the class:

1. URLShortener.shorten(long url)

a. Given a full-length URL,
generate a shortened version of the URL, and
store the original URL in the DB

2. URLShortener.retrieve (short url)

a. Given an existing shortened URL,
retrieve the full-length URL from the DB

b. Given a non-existent shortened URL,
raise a “not found" error

README [2 of 2]

URLShortener Will be extended in the following way:
1. Use a better URL shortening algorithm

2. Use a more scalable DB technology

README [2 of 2]

URLShortener Will be extended in the following way:
1. Use a better URL shortening algorithm

2. Use a more scalable DB technology

To make the above changes easier, we wish to:
1. Verify that URLShortener is safe to change

2. Redesigh URLShortener so that it can be extended

© O NV A WN R

BB B DD DWW WWWWWWWWNNNNNNNNNNERRRRB B |3 2 23 |3 @23 |2
U B WNRPR SO ®®NOU & WNROGO®NOU & WNROO®NOU & WN RS

require './app/url_shortener
require './spec_helper'

RSpec.describe URLShortener do
before(:all) do
@db = Daybreak::DB.new './data/urls.db’
end

describe '.shorten' do
it 'shortens the url' do
short_url = URLShortener.shorten('https://www.yahoo.com")

expect(short_url.size).to be < 'https://www.yahoo.com'.size
end

it 'writes shortened url the db' do
short_url = URLShortener.shorten('https://www.google.com')

@db. load
retrieved_url = @db[short_url]
expect(retrieved_url).to eq 'https://www.google.com'
end
end

describe '.retrieve' do
it 'retrieves full-length url from the db' do
@db['https://short_url.com'] = 'https://www.full_length_url.com'

long_url = URLShortener.retrieve('https://short_url.com')

expect(long_url).to eq 'https://www.full_length_url.com'
end

it 'raises a "not found" error when url is not in the db' do
expect do
URLShortener. retrieve('https://unknown_url.com')
end.to raise_error('URL not found: https://unknown_url.com')
end
end

after(:all) do
@db.close
File.delete('./data/urls.db')
end
end

O 00 NO U B W N =

N NNNNNNRRRRR B B B B
O Ul B WNRO©WOWMNOUDDWRNIR

<

<

require 'daybreak'

class URLShortener
def self.shorten(full_length_url)
short_url = 'https://conn.io/' + rand(1000..99999).to_s(36)
db = Daybreak::DB.new './data/urls.db'
db.set!(short_url, full_length_url)
db.close

short_url
end

def self.retrieve(short_url)
db = Daybreak::DB.new './data/urls.db'

unless db.keys.include?(short_url)
db.close
raise "URL not found: #{short_url}"
end

full_length_url = db[short_url]
db.close

full_length_url
end
end

© ® N oV s

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

How can | improve the tests in

RSpec.describe URLShortener do
before(:all) do
@db = Daybreak::DB.new './data/urls.db’
end

describe '.shorten' do
it 'shortens the url' do
short_url = URLShortener.shorten('https://www.yahoo.com")

expect(short_url.size).to be < 'https://www.yahoo.com'.size
end

it 'writes shortened url the db' do
short_url = URLShortener.shorten('https://www.google.com')

@db. load
retrieved_url = @db[short_url]
expect(retrieved_url).to eq 'https://www.google.com'
end
end

describe '.retrieve' do
it 'retrieves full-length url from the db' do
@db['https://short_url.com'] = 'https://www.full_length_url.com'

long_url = URLShortener.retrieve('https://short_url.com')

expect(long_url).to eq 'https://www.full_length_url.com'
end

it 'raises a "not found" error when url is not in the db' do
expect do
URLShortener. retrieve('https://unknown_url.com')
end.to raise_error('URL not found: https://unknown_url.com')
end
end

after(:all) do
@db.close
File.delete('./data/urls.db')
end
end

& GitHub Copilot

e How can | improve the tests in #selection?
@ How canl| move in small steps?

7 (
8 & GitHub Copilot (o7

] describe '.shorten' dc Used 1reference >

10 it 's — — e. Here's a step-by-step guide:
11

= S Change before (:all) to before (:eaCh) ew database instance for each test.

13

L et Ty T e
15 end

16 it 'writes shortened url the db'

17 short_url = URLShortener.shorten('https://www.googl i calls in your tests to pass @db as an argument.
m Pass db as an argument

19 @db. load

20 retrieved_url = @db[short_url]

21 expect(retrieved_url).to eq 'https://wwy - il Malntalnablllty

22 ¢ .
: ‘ Replace @db with 1et (:db)
25 describe '.retrieve'

26 it 'retrieves full-length url from the db'
27 @db['https://short_url.com'] ‘https://www.full_length_url.com'
28

29 long_url = URLShortener.retrieve('https://short_url.com')

30

31 expect(long_url).to eq 'https://www

‘ | Add new tests for edge cases

34 it 'raises a "not found" error when url

4. Step 4: Replace @db with let(:db) . This is more idiomatic in RSpec and lazily evaluat§

let(:db) { Daybreak::DB.new './data/urls.db' }

shortened URL or

35 expect it 'raises an error when trying to shorten an invalid url' do

36 URLShortener. retrieve('httpsaliunkooun ucl con.) 4

37 and.to raise_error('URL not fou

. . Run tests after each (small) step [e= Confidence

40
41 after(:all) def self.shorten(full_length_url, db = Daybreak::DB.new('./data/urls.db'))

handle edge cases...
42 @db.close end

43 File.delete('./data/urls.db')
44
45

7. Step 7: Run your tests after each step to ensure everything still works as expected.

Remember, the key to moving in small steps is to make one small change at a time and then test your code to ensure it still works
as expected. This allows you to catch and fix errors as soon as they occur, making the debugging process much easier.

require './app/url_shortener'
require './spec_helper"

RSpec.describe URLShortener do
before(:each) do
@db = Daybreak::DB.new './data/urls.db’
end

describe '.shorten' do
it 'shortens the url' do
short_url = URLShortener.shorten('https://www.yahoo.com', @db)

expect(short_url.size).to be < 'https://www.yahoo.com'.size
end

it 'writes shortened url the db' do
short_url = URLShortener.shorten('https://www.google.com', @db)

@db. load
retrieved_url = @db[short_url]
expect(retrieved_url).to eq 'https://www.google.com'
end
end

describe '.retrieve' do
it 'retrieves full-length url from the db' do
@db['https://short_url.com'] = 'https://www.full_length_url.com'

long_url = URLShortener.retrieve('https://short_url.com', @db)

expect(long_url).to eq 'https://www.full_length_url.com'
end

it 'raises a "not found" error when url is not in the db' do
expect do
URLShortener.retrieve('https://unknown_url.com', @db)
end.to raise_error('URL not found: https://unknown_url.com')
end
end

after(:each) do
@db.close
File.delete('./data/urls.db')
end
end

O 00 NO U B W N =

N NNNNNNRRRRR B B B B
O Ul B WNREPROSWOWO®-NOULDIAWNRS

require 'daybreak'

class URLShortener

def self.shorten(full_length_url, db)
short_url = 'https://conn.io/' + rand(1000..99999).to_s(36)
db.set!(short_url, full_length_url)
db.close

short_url
end

Run options: include {:focus=>true}
All examples were filtered out; ignoring {:focus=>true}

URLShortener
.shorten
shortens the url
writes shortened url the db (FAILED - 1)
.retrieve
retrieves full-length url from the db
raises a "not found" error when url is not in the db

Failures:

1) URLShortener.shorten writes shortened url the db
Failure/Error: @db.load

ThreadError:
stopping only thread
note: use sleep to stop forever
./spec/url_shortener_spec.rb:19:in ‘block (3 levels) in <top (refired)>

I
Finished in ©.41194 seconds (files took 0.11645 seconds to load) [E—
4 examples, 1 failure [r—

Failed examples: v

rspec ./spec/url_shortener_spec.rb:16 # URLShortener.shorten writes shortened url the db

zsh returned exit code 1

@ @workspace /fix code in #selection
based on error message in #terminalSelection

e def self.shorten(full_length_url, db)
* thoughtworks-psobocinski)
@workspace [fix code in #selection based on error message in #terminalSelection sho rt—u s B https i//conn.io/" + rand (1000..99999) = tO_S (36)
db.set!(short_url, full_length_url)
& «» GitHub Copilot used @workspace ffix & &
Used 3 references short_url
@ url_shortener.rb:4-10 app end

@ url_shortener.rb:4-10 #selection
#terminalSelection

Run options: include {:focus=>true}

. Correct diag nOSiS: All examples were filtered out; ignoring {:focus=>true}
@db.load called after db.close "

shortens the url
writes shortened url the db (FAILED 1)

.retrieve
retrieves 1 1 t L from the
def self.shorten(full_length_url, db = Daybreak::DB.new('./data/urls.db')) :_;f;éfV?b..zg;Lfd’i:z..hQ::AorT.r.ggn S?Ld& not in the db
short_url = 'https://conn.io/' + rand(1000..99999).to_s(36) SRR > s g =1 =l
db.set!(short_url, full_length_url) Failures:
short_url .

end

1) URLShortener.shorten writes shortened url the db
Failure/Error: @db.load

In this version, db.close is removed. You should call db.close in the part of your code where you're done with all database

operations. If you're using a framework like Rails, this would typically be in a controller action, after all model operations are done. Th readE'_'ror:
stopping only thread
38 ahd = note: use sleep to stop forever
o g 24 # ./spec/url_shortener_spec.rb:19:in 'block (3 levels) in <top (refuired)>
40 L X X —
Finished in 0.41194 seconds (files took 0.11645 seconds to load) [r—
a1 fter(:each) d 25 At Sl
after(:eac o 4 examples, 1 failure —
42 @db.close 26 €
43 File.delete('./data/urls.db') Failed examples:
44 end
45 end rspec ./spec/url_shortener_spec.rb:16 # URLShortener.shorten writes shortened url the db

zsh returned exit code 1

@ Propose a cleanup to the code in #selection

& GitHub Copilot
Used 1reference >

Here's a cleaned-up version of your code:

require 'daybreak’

class URLShortener
def self.shorten(full_length_url, db)
short_url = generate_short_url
db.set!(short_url, full_length_url)
short_url
end

def self.retrieve(short_url, db)

raise "URL not found: #{short_url}" un

db[short_url]
end

private

requir

]

[
rlace

CLldooS

e 'daybreak'

URLShortener
f self.shorten(full_length_url, db)

\ttps://conn.io/' + rand(1000..99999).to_s(36)

Remove db.close calls [« full

J

short url

Remove unnecessary local

Simpler design

variable

A

{short_url, db)

def self.generate_sho

Y. include?

e 4 Use private method generate short url — JEEEINY)

end

) not foun

Here are the changes:

1. Extracted the short URL generation to a private method generate_short_url for better readability.
2. Removed the db.close calls. If the shorten and retrieve methods are called frequently, opening and closing the

database connection each time could lead to a significant overhead. It's better to manage the database connection at a

higher level of your application.

3. Simplified the retrieve method by removing the unnecessary full_length_url variable.

22 end

end

full_length_url = db[short_urll]
db.close

full_length_url

e Propose a cleanup to the code in #selection
@ | want to make incremental changes. Just do the change with
the removal of the db.eclose methods for now

! require 'daybreak'
& GitHub Copilot
Used 1 reference > class URLShortener
Sure, here's your code with just the db.close calls removed: def self.shorten(full_length_url, db)
short_url = 'https://conn.io/' + rand(1000..99999).to_s(36)
require ‘daybreak db.set!(short_url, full_length_url)
class URLShortener short url
def self.shorten(full_length_url, db) -
short_url = 'https://conn.io/' + rand(1000..99999).to_s(36) end
db.set!(short_url, full_length_url)
short_url
end def self.retrieve(short_url, db)

def self.retrieve(short.url, db) raise "URL not found: #{short_url}" unless db.keys.include?(short_url)

unless db.keys.include?(short_url)
raise "URL not found: #{short_url}"

end db[short_url]
full_length_url = db[short_url] end
full_length_url end

end
end

This change assumes that you're managing the database connection (opening and closing it) outside of these methods.

19

20 —

21 v
22

@ Suggest refactor of #selection, considering SOLID principles

& GitHub Copilot)
Used 1reference >

The current code is quite simple and already adheres to many of the SOLID principles. However, there's one potential
improvement that could be made in terms of the Single Responsibility Principle (SRP). Currently, the URLShortener class is
responsible for both generating short URLs and interacting with the database. We could separate these responsibilities into two

classes.
Here's a refactored version of your code: 1 require 'daybreak’
n 2 A
x Breaking Change 3 class URLShortener
4 def self.shorten(full_length_url, db)
5 short_url = 'https://conn.io/' + rand(1000..99999).to_s(36)
6 db.set!(short_url, full_length_url)
7 short_url
8 end
9
10 lef self.retrieve(short_url, db)
atit raise "URL not found: #{short_url}" unless db.keys.include?(short_url)
117
13 db[short_url]
14 end
15 end
16
1i7
18
19
20
21
22
In this version, URLShortener is responsible for generating short URLS, and base is ible for i ing with the
This separation of makes the code easier to understand and maintain. It also makes it easier to test each

class in isolation.

e Suggest refactor of #selection, considering SOLID principles
=@ We're initializing the DB connection outside of the class.

Can you propose a refactor that won't break the tests?
& GitHub Copilot 4 &

reak'
Used 1reference)
Sure, if you want to keep the database initialization outside of the class and not break the existing tests, you can refactor the

tener
code to separate the concerns of URL generation and database operations without changing how the database is initialized.

shorten(full_length_url, db)

Here's a refactored version of your code: _url = 'https://conn.io/' + rand(1000..99999).to_s(36)
t!(short_url, full_length_url)
_url

¥ Non-breaking change
A Sti” not extensible retrieve(short_url, db)

"URL not found: #{short_url}" db.keys.include?(short_url)

ort_url]

In this version, URLShortener is responsible for interacting with the database, and URLGenerator is responsible for generating
short URLs. This separation of concerns makes the code easier to understand and maintain. It also makes it easier to test each
class in isolation.

e Suggest refactor of #selection, considering SOLID principles
e We're initializing the DB connection outside of the class.
Can you propose a refactor that won't break the tests?
@ \We want to easily swap out the URL generating logic.

. Could you suggest a refactor that would enable this?
Here's a refactored version of your & GitHub Copilot & & httpg://;on;.io;' +'rand(l@@@..99999).to_s(36)

Ussd Treterence; _url, full_length_url)
Sure, if you want to make the URL generating logic swappable, you can introduce a strategy pattern. This involves defining a

. N O n b | common interface for all URL generators and passing the specific generator you want to use as a parameter.
—

. Here's a refactored version of your code:

A Still no . Non—breaking Change :ES:ZEEE?r;ls::)rt_urw- inless db.keys. include?(short_url)

In this version, URLShortener.shorten takes an optional url_generator parameter. If no generator is provided, it uses

N t & I DefaultURLGenerator . This makes it easy to swap out the URL generating logic: just pass a different generator when you call
OW eX e n S I e URLShortener.shorten .

Each URL generator just needs to implement a generate method that returns a short URL. For example, here's how you could
define a generator that always returns the same URL:

I'Uncovered edge case

And here's how you could use it:

In this version, URLShortener is responsible for interacting with the database, and URLGenerator is responsible for g¢

5 = 2 5 5 3 s URLShortener.shorten(full_length_url, db, StaticURLGenerator.new)
short URLs. This separation of concerns makes the code easier to understand and maintain. It also makes it easier to te

class in isolation.

o d require 'daybreak'
Completing refactor)
o 3 v class URLShortener
before GddreSSIng 4 v def self.shorten(full_length_url, db, url_generator = DefaultURLGenerator.new)
o 5 short_url = url_generator.generate
n€WIy-dISCOV€red 6 db.set!(short_url, full_length_url)
7/ short_url
edge case... g ol
9
10 v def self.retrieve(short_url, db)
11 raise "URL not found: #{short_url}" unless db.keys.include?(short_url)
12
13 db[short_url]
14 end
15 end
16
17 ~ class DefaultURLGenerator
18 def generate
19 'https://conn.io/' + rand(1000..99999).to_s(36)
20 end —
21 end —

end v

N
N

@ We don't want a static URL generator because all the short
URLs would collide with each other and full URLs
would be lost in the DB.

@ \We don’'t want a static URL generator because all the short
URLs would collide with each other and full URLs
would be lost in the DB.

We don't handle the edge case that a generated short URL
already exists in the DB.

@ \We don’'t want a static URL generator because all the short
URLs would collide with each other and full URLs
would be lost in the DB.

We don't handle the edge case that a generated short URL
already exists in the DB.

& GitHub Copilot & P
Used 1 reference >

C a n We a d d a te St fo r t h at? Sure, here's a simple unit test that checks if the shorten method can handle the case where a generated short URL already

exists in the database. This test uses the rspec testing framework:

require 'rspec’
require_relative 'url_shortener'

describe URLShortener do

¥ Appropriate testing approach
¥ Well-explained

in the database' do
conn.io/1', 'https://conn.io/2')

expect(URLShortener.shorten('https://example.com', db, url_generator)).to eq('https://conn.io/2"')
end
end

Can we add a test for that?

@ That works. We now have a failing test in #terminalSelection.
Can you now suggest an update to the implementation
in #selection?

3 z class URLShortener
& GitHub Copilot

def self.shorten(full_length_url, db, url_generator = DefaultURLGenerator.new)
Used 2 references > short_url = url_generator.generate

db.set!(short_url, full_length_url)

short_url
end

Sure, to handle the case where a generated short URL already exists in the database, you can modify the shorten method to
keep generating new URLs until it finds one that's not already in the database. Here's how you could do it:

def self.shorten(full_length_url, db, url_generator = DefaultURLGenerator.new)
short_url = url_generator.generate
while db.keys.include?(short_url)
short_url = url_generator.generate

def self.retrieve(short_url, db)
raise "URL not found: #{short_url}" unless db.keys.include?(short_url)

end db[short_url]
db.set!(short_url, full_length_url) end
short_url end

end |

In this version, after generating a short URL, the method checks if it's already in the database. If it is, it generates a new URL and ;g} t‘ﬁRt“e fdfhe ; : B

i generated one already exists in the database (FAILED - 1)
checks again. This process repeats until it finds a URL that's not in the database. Then it stores the full URL under the short URL efbiy T S
in the database and returns the short URL. nd" error when url is not in the db

1) URLShortener.shorten generates a new short URL if the generated one already exists in the database
Failure/Error: expect(URLShortener.shorten(long_url, db, url_generator)).to eq(shorter_url)

expected: "https://conn.io/2"
got: “"https://conn.io/1"

(compared using ==)
./spec/url_shortener_spec.rb:35:in “block (3 levels) in <top (required)>'

Finished in 0.04193 seconds (files took @.13735 seconds to load)
5 examples, 1 failure

Failed examples:
rspec ./spec/url_shortener_spec.rb:31 # URLShortener.shorten generates a new short URL if the generated one already exists in the database

zsh returned exit code 1

W 0N LA WN

NN NNNNNERER RR |2 2 2 3 3 &2
SV A WNRE OO ®NOUNAEWNRS

require './app/url_shortener'
require './spec_helper'

describe URLShortener do
let(:db) { double('Database') }
let(:url_generator) { double('URLGenerator') }

before do

allow(db).to receive(:set!)

allow(db).to receive(:keys).and_return([])
end

it 'generates a new short URL if the generated one already exists in the database' do

allow(url_generator).to receive(:generate).and_return('https://conn.io/1', 'https://conn.io/2')

allow(db).to receive(:keys).and_return(['https://conn.io/1'])

expect (URLShortener.shorten('https://example.com', db, url_generator)).to eq('https://conn.
end
end

RSpec.describe URLShortener do
before(:each) dq
@db = Daybreak::DB.new './data/urls.db’
end

describe '.shorten' do
it 'shortens the url'

hort url (

1 require 'daybreak'

2

3 v class URLShortener

4 v def self.shorten(full_length_url, db, url_generator = DefaultURLGenerator.new)
5 short_url = url_generator.generate

6 while db.keys.include?(short_url)

7 short_url = url_generator.generate

8 end

9 db.set!(short_url, full_length_url)
10 short_url
11 end
12
13 v def self.retrieve(short_url, db)
14 raise "URL not found: #{short_url}" unless db.keys.include?(short_url)
15

URLShortener

.shorten

shortens the url

writes shortened url to the db

generates a new short URL if the generated one already exists in the database (FAILED - 1)
.retrieve

retrieves full-length url from the db

raises a "not found" error when url is not in the db

Failures:

Finished in 0.04193 seconds (files took ©.13735 seconds to load)
5 examples, 1 failure

Failed examples:
rspec ./spec/url_shortener_spec.rb:31 # URLShortener.shorten generates a new short URL if the generated one already exists in the database

2zsh returned exit code 1

Demo Review
Did GitHub Copilot help us improve Code Habitability?

+ Improved test speed and
maintainability

o Memoized helper functions (1et) o Human coder(s) will always have more
o Use of test doubles and stubs context than the Al Coding Assistant

+ Improved code design
o Simplified behaviour: removed
unnecessary DB calls
o Added extensibility: dependency-injected
logic for generating URLs

o Prompt customization techniques
(tool-dependent) could improve this

+ Miscellaneous improvements

o Helped identify an important edge case
o Expressive haming; readable code

o What about using a constructor?

Guidelines

Guidelines

what to avoid = what to do instead

Context Poisoning Context Selection

Use context selectors: open files, @workspace,
#selection, #terminalSelection, etc.

Recommendations based on code we intend
to move away from

Review Fatigue » “Baby" Steps

Glossing over code changes and missing details Ask the coding assistant to break down the steps

Guidelines

what to avoid = what to do instead

Context Poisoning

Recommendations based on code we intend
to move away from

Review Fatigue
Glossing over code changes and missing details

Zoning Out on Autopilot

Insufficient critiquing of the emerging
implementation

Side-tracking
Getting distracted by surprising / useful
coding assistant output

\ 2B 2B 2B ¢

Context Selection

Use context selectors: open files, @workspace,
#selection, #terminalSelection, etc.

“"Baby" Steps

Ask the coding assistant to break down the steps

Interrogate Recursively

Repeatedly asking the coding assistant to improve
on the code it just generated

Pair Programming

Having a second human is still useful to help
keep us on track

shipping code we can live with

Photo generated by Google Gemini

shipping code that is a joy to live in

EREE o
@ psobocinski@thoughtworks.com "’1:‘} _f('e'sgs
r’

spikes.sobes.co FEI-"#:" ‘ﬁ*{ sources
l' = ‘."

Photo generated by Google Gemini

mailto:psobocinski@thoughtworks.com

