
How AI Coding Assistants
Improve Code Habitability
Paul Sobocinski | spikes.sobes.co

How do we feel about
the code we ship today?

Photo generated by Google Gemini

How do we feel about
the code we ship today?

Can we set a higher bar?

Photo generated by Google Gemini

Today we explore…
1. Why setting a higher bar matters

2. How code habitability helps set that bar

3. How AI coding assistants get us there

Dick Fosbury at the 1968 Olympic trials (Wikimedia Commons)

https://commons.wikimedia.org/wiki/File:Dick_Fosbury_at_the_1968_Olympic_trials.jpg

Paul Sobocinski
󰳕 20 yrs full-stack

Software Engineer

Paul Sobocinski
󰳕 20 yrs full-stack

Software Engineer
🌞 Coaching Software

Engineers & Tech Leads
🤖 1.5 yrs exploring AI

coding assistants

Why setting a higher bar matters

can focus on
more satisfying
work

🤩 Software
Developers are
starting to love
GenAI tools

74%
Are
(very) favourable
of AI tools72%
Our internal
NPS score
for GitHub Copilot32

Sources: Stack Overflow Developer Survey 2024
Internal Thoughtworks Survey 2024

of devs say
theyʼre more
productive

🚀 With GenAI,
it’s never been
easier to
write code

88%
faster task
completion with
AI Coding Assistants55%
agree increased
productivity is
biggest benefit81%

Sources: Stack Overflow Developer Survey 2024
GitHub Next Survey 2024

Total contributions
on GitHub in 2023

📈
Unprecedented
volume of code
being shipped

4.5B
new projects
started in 202398M
private repos activity
and growth rate

81%
40%

Source: GitHub Octoverse Survey 2023

80% of developers are not happy at their job.

Source: Stack Overflow Developer Survey 2024
Source (photo): Fatemeh Rezvani via Unsplash

“Select
all that
applyˮ

32.9%Build stack complexity

32.3%Deployment stack complexity

Tools / systems reliability 31.5%

Tech debt 62.4%

https://unsplash.com/@irzvn_?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/a-man-sitting-in-front-of-two-computer-monitors-Xn3D8DIzH7Q?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

Source: Stack Overflow Developer Survey 2024
Photo sources: Fatemeh Rezvani via Unsplash

80% of developers are not happy at their job.

“Select
all that
applyˮ

32.9%Build stack complexity

32.3%Deployment stack complexity

Tools / systems reliability 31.5%

Tech debt 62.4%

Source: Stack Overflow Developer Survey 2024
Photo sources: Fatemeh Rezvani via Unsplash

Single worker digging hole meme

Lead Dev

https://unsplash.com/@irzvn_?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/a-man-sitting-in-front-of-two-computer-monitors-Xn3D8DIzH7Q?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/@irzvn_?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/a-man-sitting-in-front-of-two-computer-monitors-Xn3D8DIzH7Q?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://imgflip.com/memetemplate/274790543/single-worker-digging-hole

How code habitability helps set the bar

Habitability : Origins

1975 1996

2017

2019kentbeck.github.io

2022

…

Habitability : Definition

What it is:
The characteristic of source code that enables [people] coming to the code
later in its life to understand its construction and intentions and to
change it comfortably and confidently.

What it does:
Habitability makes a [codebase] livable, like home. And this is what we want
in software — that developers feel at home, can place their hands on any
item without having to think deeply about where it is.

Richard Gabriel
Patterns of Software

1996

Effects of Low Habitability

Brittle
Code

Uncooperative
Code

Rigid
Code

Unpredictable
Code

Breaking
changes are

likely

Breaking
changes take
longer to fix

Features take
longer to add

Changes take
much longer

than predicted

Photos generated by Google Gemini

Tests are:
－ Nonexistent

－ Confusing

－ Flakey

－ Slow

Low Habitability

Tests are:
－ Nonexistent

－ Confusing

－ Flakey

－ Slow

Implementation code has:
－ Ambiguous or misleading naming

－ Confusing structure or organization

－ Needless complexity

－ Entangled* dependencies

Low Habitability

* bi-directional, circular, unnecessary, etc.

Tests:
＋ Pass or fail when they are meant to

＋ Express what is being tested & why

＋ Communicate the codeʼs design

＋ Exhibit established
design principles*

High Habitability

Tests:
＋ Pass or fail when they are meant to

＋ Express what is being tested & why

＋ Communicate the codeʼs design

＋ Exhibit established
design principles*

Implementation code:
＋ Has intention-revealing

naming and structure

＋ Is as simple as possible

＋ Has manageable dependencies**

＋ Exhibits established***
design principles

High Habitability

* Test Desiderata, Practical Test Pyramid, Use of TDD / BDD, etc.
** loose coupling, composable, dependency inversion, etc.
*** Four Rules of Simple Design, SOLID, CUPID, etc.

Habitability takeaways

tests

implementation

understand

change

Habitability applies to
both codebases

We can apply both
behaviours to the code

How AI coding assistants get us there…

DEMO

README [1 of 2]
We have inherited a URLShortener . Two public methods exist on the class:

README [1 of 2]
We have inherited a URLShortener . Two public methods exist on the class:

1. URLShortener.shorten(long_url)

a. Given a full-length URL,
generate a shortened version of the URL, and
store the original URL in the DB

README [1 of 2]
We have inherited a URLShortener . Two public methods exist on the class:

1. URLShortener.shorten(long_url)

a. Given a full-length URL,
generate a shortened version of the URL, and
store the original URL in the DB

2. URLShortener.retrieve(short_url)

a. Given an existing shortened URL,
retrieve the full-length URL from the DB

b. Given a non-existent shortened URL,
raise a “not foundˮ error

README [2 of 2]
URLShortener will be extended in the following way:

1. Use a better URL shortening algorithm

2. Use a more scalable DB technology

README [2 of 2]
URLShortener will be extended in the following way:

1. Use a better URL shortening algorithm

2. Use a more scalable DB technology

To make the above changes easier, we wish to:

1. Verify that URLShortener is safe to change

2. Redesign URLShortener so that it can be extended

🧠 How can I improve the tests in #selection?

✅ Isolation of tests
⚠ Test for edge cases
✅ Use of let for setup

(memoized test helper)

● How can I improve the tests in #selection?
🧠 How can I move in small steps?

Change before(:all) to before(:each)
+ Isolation

Pass db as an argument
+ Maintainability

+ Speed
Replace @db with let(:db)

~ (skip)Add new tests for edge cases

Run tests after each (small) step + Confidence

🧠 @workspace /fix code in #selection
based on error message in #terminalSelection

✅ Correct diagnosis:
@db.load called after db.close

🧠 Propose a cleanup to the code in #selection

Remove db.close calls

Remove unnecessary local variable
+ Simpler design

Use private method generate_short_url ~ (skip)

● Propose a cleanup to the code in #selection
🧠 I want to make incremental changes. Just do the change with

the removal of the db.close methods for now

❌ Breaking change

🧠 Suggest refactor of #selection, considering SOLID principles

❌ Breaking change

✅ Non-breaking change
⚠ Still not extensible

● Suggest refactor of #selection, considering SOLID principles
🧠 Weʼre initializing the DB connection outside of the class.

Can you propose a refactor that wonʼt break the tests?

✅ Non-breaking change
⚠ Still not extensible

● Suggest refactor of #selection, considering SOLID principles
● Weʼre initializing the DB connection outside of the class.

Can you propose a refactor that wonʼt break the tests?
🧠 We want to easily swap out the URL generating logic.

Could you suggest a refactor that would enable this?

✅ Non-breaking change
✅ Now extensible

‼ Uncovered edge case

Completing refactor
before addressing
newly-discovered
edge case…

🧠 We donʼt want a static URL generator because all the short
URLs would collide with each other and full URLs
would be lost in the DB.

🧠 We donʼt want a static URL generator because all the short
URLs would collide with each other and full URLs
would be lost in the DB.

● We donʼt handle the edge case that a generated short URL
already exists in the DB.

🧠 We donʼt want a static URL generator because all the short
URLs would collide with each other and full URLs
would be lost in the DB.

● We donʼt handle the edge case that a generated short URL
already exists in the DB.

● Can we add a test for that?

✅ Appropriate testing approach
✅ Well-explained

● Can we add a test for that?● Can we add a test for that?
🧠 That works. We now have a failing test in #terminalSelection.

Can you now suggest an update to the implementation
in #selection?

＋ Improved test speed and
maintainability

○ Memoized helper functions (let)
○ Use of test doubles and stubs

＋ Improved code design
○ Simplified behaviour: removed

unnecessary DB calls
○ Added extensibility: dependency-injected

logic for generating URLs

＋ Miscellaneous improvements
○ Helped identify an important edge case
○ Expressive naming; readable code

－ Not all suggestions provided
were relevant

○ Human coder(s) will always have more
context than the AI Coding Assistant

－ Needed repeated requests to make
small, incremental changes

○ Prompt customization techniques
(tool-dependent) could improve this

－ Suggestions lacked novelty
○ What about using a constructor?

Demo Review
Did GitHub Copilot help us improve Code Habitability?

Guidelines

Context Selection
Use context selectors: open files, @workspace,
#selection, #terminalSelection, etc.

Context Poisoning
Recommendations based on code we intend
to move away from

Guidelines
what to avoid → what to do instead

Review Fatigue
Glossing over code changes and missing details

“Babyˮ Steps
Ask the coding assistant to break down the steps

Context Selection
Use context selectors: open files, @workspace,
#selection, #terminalSelection, etc.

Context Poisoning
Recommendations based on code we intend
to move away from

Guidelines
what to avoid → what to do instead

Review Fatigue
Glossing over code changes and missing details

“Babyˮ Steps
Ask the coding assistant to break down the steps

Zoning Out on Autopilot
Insufficient critiquing of the emerging
implementation

Interrogate Recursively
Repeatedly asking the coding assistant to improve
on the code it just generated

Side-tracking
Getting distracted by surprising / useful
coding assistant output

Pair Programming
Having a second human is still useful to help
keep us on track

Photo generated by Google Gemini

shipping code we can live with

shipping code that is a joy to live in

shipping code we can live with

psobocinski@thoughtworks.com
spikes.sobes.co

Photo generated by Google Gemini

slides
repo
sources

mailto:psobocinski@thoughtworks.com

