
Finding Balance
How to build processes that
help not hurt your
engineering team

Why is process good?

Improve efficiency by reducing back and forth; minimize downtime and bottlenecks

Ensure prioritization accurately takes into account scope

Clear direction and goals; people want to know what they’re working on and what
success looks like

Predictability and cross functional transparency; allows other teams that rely on
features shipping to plan accordingly

How fast is it to ship
the average feature?

If shipping and
iterating is
straightforward for
your product, you can
probably get away
with less process

How much process is right for your team? It depends!

How clear are your
team’s goals and
priorities?

If prioritization
decisions are fast,
and there isn’t much
whiplash, you can
probably get away
with less process

How big is your
team?

Complexity scales
with engineering org
size, the bigger your
org and company is,
the more process
you likely need

Signs you might need more process

How do you know if you need more process?

Lots of time week to week is spent discussing prioritization; More upfront
time planning can save valuable time in the long run

Team’s are working hard but not shipping at the expected velocity; it’s
likely that there’s lots of stops and starts on work slowing things down

Managing dependencies is difficult, teams that rely on other teams for
work have to plan in significant wait times to get capacity from others

Chaotic or unclear priorities, can often feel like the team is just operating
like a LIFO queue

Signs you might need less process

How do you know if you have too much process?

Engineers are spending more than ~1 hr a week regularly in planning
meetings

Planning a project consistently takes longer than executing on it

You 100% predict what the roadmap will look like; either you’re
spending too much time crafting it or there’s no flexibility to adapt

Hitting planning metrics is celebrated more than the value that’s
delivered to customers by shipping those features

Engineers don’t feel empowered to make decisions and need to wrangle
many stakeholders to move things forward

How we plan across EPD

0
One pager

Lifecycle of a project - a common interface for all projects

1
Project brief

2
PRD

3
Tech spec

4
Implementation

5
Ship!

Step 0: One pager

One pagers are a helpful tool for exploring the problem space and scoping a project

They are most frequently used during quarterly planning to understand scope for a
project so we can tile and draw the cut line for the quarter

Team will typically assign one pagers during the planning process, outside of this,
check with your manager if a one pager is necessary or if a project brief will suffice

Post in #open-projects slack

Step 0: One pager

Step 1a: Project brief - WIP draft

Project briefs are used to kick off a project and ensure alignment across
stakeholders

Project brief is started – typically by Product, but can be anyone who is the DRI for
defining the goals of this project, and why it’s important

At this point the Project Brief should contain context on the motivation for this
project; what are the goals and why is this important to tackle?

Get the ball rolling on spinning up the project team by creating a #project-channel
with the XFN group and schedule a kick-off meeting

Step 1b: Project brief

Prior to the kick-off meeting, the XFN group should try and add any constraints,
assumptions, open questions that are relevant to their domain area to the brief

During kick-off, ensure everyone has the necessary context on the project and
goals – and spend time live discussing any additional questions or helpful context

Align on next steps and owners for discovery/validation, are there any key open
questions that should block starting the tech spec?

Post in #open-projects slack

Step 1: Project brief

Step 2: PRD (product requirements doc)

Product (or acting “product DRI”) is responsible for taking the
input from discovery and validation and producing a PRD
covering:

● Motivation (which should also be covered in initial project
brief)

● Key decisions that might be controversial or informed by
constraints/assumptions validated during discovery

● Detailed product requirements to ensure that there is a
central place of truth outlining all of the core requirements
for this project

Step 2: PRD

Step 3: Tech spec

At this point, the high-level discovery should be done and the project direction
should be de-risked. Now we need to figure out the details of how

Use the tech spec template, it can be adapted but helps to ensure certain key
components aren’t forgotten such as metrics, customer facing changes, etc

Tag people for review and make it clear what you’re looking for in their review (i.e.
looking for feedback on xyz piece from person a)

Make sure key reviewers approve the tech spec before starting on any controversial
pieces of the project

Finally, post in #open-projects slack (yes there have been 3 posts about this
project at this point, this helps to ensure alignment throughout each stage)

Step 3: Tech spec

Step 3: Tech spec

Step 3 continued: Tech spec - estimation

Estimation is a key part of the tech spec, to ensure we know what we’re getting
ourselves into and uncover any potential gotchas

1 point == 1 hour of ideal time (not actual time)

Estimation should be a tool, not something to stress over. The goal is to spend just
enough time estimating to ensure predictability but not over planning

Step 3 continued: Tech spec - estimation

Step 4: Implementation

Create a linear project and add the tickets you sketched out in the tech spec

Decide how you want to run the project day to day, often teams do live or async
standups depending on the project and team involved

Ensure project updates from linear are hooked up to #updates-epd

Step 4: Implementation

Step 5: Ship ship ship 🚢

Develop a roll out process, this often involves feature flags and a bug bash where
Stytch employees try and break a new feature

Post in #all-launches so everyone can celebrate the launch and go to market teams
have visibility so that they can share the new feature appropriately

Work with Developer Success for any beta customers that might want to get early
access to this feature

Why this works for us

What works for our team

Engineers own execution on projects: project leads are responsible for driving the
tech spec, breaking it down into milestones and tickets, and driving execution week
to week. Managers hold engineers accountable but give them space to execute.

The team takes the spec phase very seriously, we go deep into figuring out what
we’re building and getting alignment. This saves us more time in the long run
because weekly planning becomes much more straightforward.

We have a firehose communication culture. We try to create the minimum amount
of overhead for cross team communication by standardizing what is shared and
when so it’s easy to keep track of high level progress and plans.

We emphasize product mindedness for our engineering team, as a dev tools
company, engineers play a key role in defining our product. This upfront alignment
empowers engineers to make decisions along the way.

How to evolve your processes to find
equilibirum

What problems are you trying to solve? Dig in with your team to figure out what is causing friction
today. Some examples of what that might look like:
1. Does too much time go to planning?
2. Does it take too long to get sign off on projects?
3. Do priorities change frequently?

Finding equilibrium

1. How clear are your team’s
goals and priorities?

If you find yourself having to
spend too much time planning
week to week, more upfront
alignment might be helpful.

2. Is there too much process
that’s getting in the way of
progress?

There’s a balance between
upfront investment to ensure
you’re building the right thing, and
having too many hoops to jump
through.

3. Do you have enough process to
ensure there’s the right alignment
on what’s getting worked on and
why?

More alignment on overall goals,
for a team, project, or quarter can
help to ensure you’re not making
constand u-turns.

How to land changes effectively

Don’t experiment too much and change processes all the time, iteration and
evolution are good, but chaos can ensue with too much change, too often

Get buy in from your team on the goals of the changes, frustration with new or more
process can often stem from focusing on the short term implications, focusing on the
impact of these changes over time and the resulting value can be effective

Develop processes with your team whenever possible, ownership over developing these
processes can help to ensure they’re 1) solving the right problems 2) there’s buy in and
adherence once they’re rolled out

Thank you! @juliannaelamb
stytch.com

https://www.linkedin.com/in/juliannaelamb/
https://stytch.com

