In Anticipation of Change Strategies for Engineering Leaders to Stay Current and Effective

James Da Costa, VP of Engineering at Cint

In Anticipation of Change

"our job as CEOs, is to look around corners, anticipate where opportunities will be someday and position the company to be near them; standing under the tree to do a diving catch when the apple falls"

–Jensen Huang, Founder, President and CEO (Acquired Podcast, Oct 2023)

Strategies to develop an **Anticipatory Mindset** to help with longer-term planning and future-proofing

Sources of information for Knowledge Gathering

to help build our intuition and improve decision-making

Use your leadership stack as a **Fallback Mechanism**

to help stay effective when current knowledge is lacking

Scenario Planning

Scenario Planning

- how we run our organisation?
- * "critical uncertainties": impactful and unpredictable driving forces
 - * AI-assisted engineering
 - * Software engineering salaries
- * Consider hyper-growth and slow-growth scenarios for each.
- Create a 2x2 scenario matrix.

* **Define Scenarios**: What are the **two critical uncertainties** that might change

AI-assisted engineering grows. Developer salaries stable.

Salaries remain stable

AI-assisted engineering adoption is slow. Developer salaries stable

Scenario Planning

- * What is the likelihood & impact of these scenarios occurring?
- What are we doing today that would:
 likely fail in these scenarios?
 thrive in these scenarios?
- What options should we consider in anticipation of likely & high impact scenarios?

tech leaders need to anticipate and manage the inevitable technology changes driven by internal and external forces

Technology Radar

What is the Radar?

- A visualisation that shows "blips" representing choices you have made within 4 quadrants. Rings represent status of those choices.
- * Hold: don't use for anything new
- * **Assess**: research it and feedback
- * **Trial**: try on a low risk project
- * Adopt: you should be using this

Build your own: www.thoughtworks.com/radar/byor

Why build a technology radar?

- * Tech radars can help to communicate the broader technical strategy
- * Bring functions, tech leads & managers together to document current state - e.g. Data Science, UI, Backend, Infrastructure, QA
- * Great opportunity to discuss contradictions, implicit choices, failed initiatives
- * Highlights organisational characteristics (e.g. deprecation & adoption challenges)
- * Communicates institutional knowledge in a clear and consistent way (e.g. for new starters & new team members)

Strategies to develop an **Anticipatory Mindset** to help with longer-term planning and future-proofing

Sources of information for Knowledge Gathering

to help build our intuition and improve decision-making

Use your leadership stack as a **Fallback Mechanism**

to help stay effective when current knowledge is lacking

Elite footballers are often scanning the field to build an understanding of the game; improving their decision-making when they get the ball.

Scanning Questions

Scanning Questions

- * Company Knowledge
- * Industry Knowledge
- Opportunistic Knowledge

Company Knowledge

- * How does the company make money?
- * What are the longstanding challenges we need to solve?
- How do our teams collaborate, debate, design and deliver software?
- * What slows us down? How do we reduce cycle time?

Industry Knowledge

- * Why does this industry exist? What problems is it here to solve?
- * Who are our major competitors? Why do they exist and how do they differentiate?
- * How might someone create a gamechanging disruptive product in this industry?
- Who are our ideal customers? Who are our actual customers?

Opportunistic Knowledge

- * Which technologies are potentially undervalued or underutilised?
- * What can we learn from adjacent industries?
- * What can we learn from our colleagues and communities?
- * What can we learn from changes in attitudes towards new technologies?

Scanning Questions

- * Company Knowledge
- * Industry Knowledge
- Opportunistic Knowledge

Strategies to develop an **Anticipatory Mindset** to help with longer-term planning and future-proofing

Sources of information for Knowledge Gathering

to help build our intuition and improve decision-making

Use your leadership stack as a **Fallback Mechanism**

to help stay effective when current knowledge is lacking

- * Prepare for change ahead of time
 - * Framework to identify skills and competencies we'll need
 - * Help us gain confidence and increase our potential
- * Stay effective during a transition
 - Recognise when current knowledge is lacking
 - * Stay effective & build up knowledge intentionally

	Focus Area	Competencies
	Company Goals	KPIs, Customer Adoption, Engineering Cost, Technical Strategy, Financial Targets, Metrics, Empowered Teams
**************************************	Software Engineering	DX, Agile, Quality, Complexity, Distributed Systems, Design, Incident Management, Testing, Architecture, Performance
2 ************************************	Project Management	Setting Goals, Understanding Risks, Planning, Dependencies, Bottlenecks, Timelines, Problem Solving, Team Dynamics
	People Skills	1:1s, Performance, Delegation, Decision-making, Team building, Feedback, Career Development, Coaching

lies

7.....

	Focus Area	Competencies
	Company Goals	KPIs, Customer Adoption, Engineering Cost, Technical Strategy, Financial Targets, Metrics, Empowered Teams
**************************************	Software Engineering	DX, Agile, Quality, Complexity, Distributed Systems, Design, Incident Management, Testing, Architecture, Performance
2 ************************************	Project Management	Setting Goals, Understanding Risks, Planning, Dependencies, Bottlenecks, Timelines, Problem Solving, Team Dynamics
	People Skills	1:1s, Performance, Delegation, Decision-making, Team building, Feedback, Career Development, Coaching

lies

7.....

	Focus Area	Competencies
	Company Goals	KPIs, Customer Adoption, Engineering Cost, Technical Strategy, Financial Targets, Metrics, Empowered Teams
**************************************	Software Engineering	DX, Agile, Quality, Complexity, Distributed Systems, Design, Incident Management, Testing, Architecture, Performance
2 ************************************	Project Management	Setting Goals, Understanding Risks, Planning, Dependencies, Bottlenecks, Timelines, Problem Solving, Team Dynamics
	People Skills	1:1s, Performance, Delegation, Decision-making, Team building, Feedback, Career Development, Coaching

lies

Purpose

7.....

HOW

WHAT

MUN

	Focus Area	Competencies
	Company Goals	KPIs, Customer Adoption, Engineering Cost, Technical Strategy, Financial Targets, Metrics, Empowered Teams
**************************************	Software Engineering	DX, Agile, Quality, Complexity, Distributed Systems, Design, Incident Management, Testing, Architecture, Performance
	Project Management	Setting Goals, Understanding Risks, Planning, Dependencies, Bottlenecks, Timelines, Problem Solving, Team Dynamics
	People Skills	1:1s, Performance, Delegation, Decision-making, Team building, Feedback, Career Development, Coaching

lies

Purpose

7.....

HOW

WHAT

MUN

In Anticipation of Change

Leadership Stack

Scanning Questions Technology Radar Scenario Planning

In Anticipation of Change

