
Viktor Orekoya
Staff Engineer, Personio

Architecting
for
Scale and Simplicity

Overview

02 Problem Landscape

03 Anecdotal Examples

04 Tips for Building

05 Takeaways

01 Introduction

I’m a software engineer passionate about building reliable and
scalable solutions across diverse domains.

I’m a tinkerer who loves learning new things.

Who am I?

🏠 Based in Cambridge
🎓 Spent the last 2 decades
tinkering
󰳕 HR Tech, Fintech, Healthcare
🏢 Personio, Stripe, WorldPay

Copyright: Maarten Scheer Copyright: Jeet Dhanoa

Building Personio Payroll Solutions

12,000+
companies use Personio today

600+ builders in 8 office locations

Why architecting for scale and simplicity?

 Why this talk?

● Numerous "failed" architectures

● Monoliths → Distributed Systems

● Monoliths: Often incomprehensible

● Microservices: Distributed the complexity
and introduced new challenges

 What this talk is not

● Not bashing or promoting any specific
technology or pattern

● Not validating or vilifying any tech choices
made by companies

● Not a magic bullet or recipe

Problem Landscape 02

Build a scalable
system to do X

courtesy: donnemartin

https://github.com/donnemartin/system-design-primer/blob/master/solutions/system_design/scaling_aws/README.md

Build a scalable
system to do X

It’s cool 😎

Great for
promotion
and the
CV 🤑

The role of design interviews

 False assumptions

● Designs are a starting point

● Systems scale automatically with specific
patterns/tech stacks

● Legacy approaches/tech stacks are slow

● Aim to check off as many as possible

● Best practices for all situations

The other
side

The big “monolith”

● Mash everything together

● Ignore best practices

● Use your database for everything: data,
queuing, file storage, etc.

Anecdotal Examples 03

Courtesy: TechWorldWithMilan

https://newsletter.techworld-with-milan.com/p/stack-overflow-architecture

Prime Video A/V monitoring service

Write PATH

READ PATH

Tips for Building 04

How should we architect a truly elastic system?

 Start simple

● Prioritise simplicity

○ Problem decomposition is key

○ Minimise mismatch between
problem space and solution domain

○ Clear boundaries/componentize
from the onset

● Prioritise correctness

○ Invest in end-to-end tests

 Stay simple

● Do enough architecture each time
(frequently)

● Allocate time to evolve your architecture
and scale JIT

● Be ready to discard obsolete elements

How should we architect a truly elastic system?

 Be data-led

● Invest in system observability to
understand the internals

● Let the data direct your scaling
investments

● Many “legacy” stacks are still fast enough

 Understand tradeoffs

● Be sure what you’re getting is better than
what you’re giving up. There are no
zero-cost abstractions in large systems

● Ensure every component pays its rent

● Physics will hold you back

● At really large scale, you will need
“specialist” interventions

How should we architect a truly elastic system?

 Data, data, data

● Data Access/Storage will probably be your biggest
headache

● Eventual consistency is not a feature

● ACID Transactions are still incredibly valuable

● Solving Distributed Transactions is HARD!

Takeaways 05
1. Understand where best practices apply

2. Prove correctness before scale

3. Scale thoughtfully and just-in-time

4. Maximize work not done

5. Always ask "Why?" and then "Why not?"

