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Who am I?

I'm a software engineer passionate about building reliable and
scalable solutions across diverse domains.

I'm a tinkerer who loves learning new things.
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Why architecting for scale and simplicity?

Why this talk?

Numerous "failed" architectures
Monoliths = Distributed Systems
Monoliths: Often incomprehensible

Microservices: Distributed the complexity
and introduced new challenges

What this talk is not

Not bashing or promoting any specific
technology or pattern

Not validating or vilifying any tech choices
made by companies

Not a magic bullet or recipe
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https://github.com/donnemartin/system-design-primer/blob/master/solutions/system_design/scaling_aws/README.md
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It's cool ==
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Great for
promotion
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The role of design interviews

System Design Blueprint:
The Ultimate Guide

False assumptions

Designs are a starting point

Systems scale automatically with specific
patterns/tech stacks

Legacy approaches/tech stacks are slow
Aim to check off as many as possible

Best practices for all situations
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The other
side

The big “monolith”

e Mash everything together
e Ignore best practices

e Use your database for everything: data,
queuing, file storage, etc.
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Anecdotal Examples
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https://newsletter.techworld-with-milan.com/p/stack-overflow-architecture

A sctb onJan 5, 2018 | parent | context | favorite | on: Ask HN: Why Is My VPN's IPs Blocked from Hacker Ne...
We're recently running two machines (master and standby) at M5 Hosting. All of HN runs on a single box, nothing exotic:
CPU: Intel(R) Xeon(R) CPU E5-2637 v4 @ 3.50GHz (3500.07-MHz K8-class CPU)
FreeBSD/SMP: 2 package(s) x 4 core(s) x 2 hardware threads
Mirrored SSDs for data, mirrored magnetic for logs (UFS)

We get around 4M requests a day.

Guidelines | FAQ | Lists | API | Security | Legal | Apply to YC | Contact

Search:
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Tips for Building




How should we architect a truly elastic system?

Start simple Stay simple
e Prioritise simplicity e Do enough architecture each time
(frequently)

o Problem decomposition is key
e Allocate time to evolve your architecture

o  Minimise mismatch between
and scale JIT

problem space and solution domain

. . e Beready to discard obsolete elements
o  Clear boundaries/componentize

from the onset
e Prioritise correctness

o |Invest in end-to-end tests
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How should we architect a truly elastic system?

Be data-led Understand tradeoffs

e [nvestin system observability to °
understand the internals

e |et the data direct your scaling
investments °

e Many “legacy” stacks are still fast enough

Be sure what you're getting is better than
what you’re giving up. There are no
zero-cost abstractions in large systems

Ensure every component pays its rent
Physics will hold you back

At really large scale, you will need
“specialist” interventions
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How should we architect a truly elastic system?

Data, data, data

e Data Access/Storage will probably be your biggest
headache

e Eventual consistency is not a feature
e ACID Transactions are still incredibly valuable

e Solving Distributed Transactions is HARD!
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Takeaways

1. Understand where best practices apply
2. Prove correctness before scale

3. Scale thoughtfully and just-in-time

4. Maximize work not done

5. Always ask "Why?" and then "Why not?"



