Architecting
for
Scale and Simplicity

Viktor Orekoya
Staff Engineer, Person io

Forsoms

Overview

01

02

03

04

05

Introduction
Problem Landscape
Anecdotal Examples
Tips for Building

Takeaways

N -seenumj

¥

Who am I?

I'm a software engineer passionate about building reliable and
scalable solutions across diverse domains.

I'm a tinkerer who loves learning new things.

i 2y Based in Cambridge
Jeiees— -

'”. nl ”I ”l @ Spent the last 2 decades

E E E N

EEEE tinkering
I.l.l.l. ™% HR Tech, Fintech, Healthcare

gf’*‘gﬂgfﬂigﬁ i Personio, Stripe, WorldPay

opyright: Maarten Scheer Copyright: Jeet Dhanoa

Building Personio Payroll Solutions

New York

Dublin
® Berl
London
® ®
Amsterdam
Remote Munich
@
Barcelo
Madrid @
®

600+ builders in 8 office locations

12,000+

companies use Personio today

A\

Why architecting for scale and simplicity?

Why this talk?

Numerous "failed" architectures
Monoliths = Distributed Systems
Monoliths: Often incomprehensible

Microservices: Distributed the complexity
and introduced new challenges

What this talk is not

Not bashing or promoting any specific
technology or pattern

Not validating or vilifying any tech choices
made by companies

Not a magic bullet or recipe

A\

Problem Landscape o 2

Build a scalable
system to do X

Worker Queve

Service

—

7 Sharding

. W e
Customers Customers
A-M N-Z
saL saL

 Federation

Customers Products
saL saL

Load Balancer Il

Web Server | ,

Write APl |
Asyne Write API I

||

'
'
EE———
' sar > i
' saL
i --] _Read
' Slave Replicas
i
'
.

————
Object
Store

courtesy: donnemartin

A\

https://github.com/donnemartin/system-design-primer/blob/master/solutions/system_design/scaling_aws/README.md

Build a scalable ;
system to do X FWhY::

Pre-Scaled System

/// /,
hy i
/ / /)
3 /
— / 7, / 7/ "/ 7/ 7
% 7 / "/// 7, 7 / /
o 7, // / % g / / /) / //
] NV AV AV ANV 7
C // /’ /) //7 / ////
d / 7, /? / / 7 7
7 / /, ,//1/ / //
17 AV AAVIN V0 V2
/ A,
o / / //6/,/ 7//// /4
J) 7 H 7 / 7
/) / / / 7/ / /)
/ / /) / ’ 7 //
0 7 0 V1 %R
0 3 2 3 Y 15)

A
N
S
0N

1]

]
BN

It's cool ==

A\

Great for
promotion

A\

The role of design interviews

System Design Blueprint:
The Ultimate Guide

False assumptions

Designs are a starting point

Systems scale automatically with specific
patterns/tech stacks

Legacy approaches/tech stacks are slow
Aim to check off as many as possible

Best practices for all situations

A\

The other
side

The big “monolith”

e Mash everything together
e Ignore best practices

e Use your database for everything: data,
queuing, file storage, etc.

A\

Anecdotal Examples

03

§\\
stackoverflow

Il

Client

:: Module D " Moo(ule_ E :; Database

WA LTS VLD UL E L LI ey fan 2 VA L T UL 4l 7 aJ H >

\ Elastic Search)

Courtesy: TechWorldWithMilan

¥

https://newsletter.techworld-with-milan.com/p/stack-overflow-architecture

A sctb onJan 5, 2018 | parent | context | favorite | on: Ask HN: Why Is My VPN's IPs Blocked from Hacker Ne...
We're recently running two machines (master and standby) at M5 Hosting. All of HN runs on a single box, nothing exotic:
CPU: Intel(R) Xeon(R) CPU E5-2637 v4 @ 3.50GHz (3500.07-MHz K8-class CPU)
FreeBSD/SMP: 2 package(s) x 4 core(s) x 2 hardware threads
Mirrored SSDs for data, mirrored magnetic for logs (UFS)

We get around 4M requests a day.

Guidelines | FAQ | Lists | API | Security | Legal | Apply to YC | Contact

Search:

BN

Audio/video stream

Customer

Prime Video A/V monitoring service

Amazon SNS
Customer’s real-time
notification topic

real-time detection
results

AWS Step Functions workflow

Media Conversion
Service

audio/video
buffers

Amazon 53
audio/video
buffers bucket

Start conversion

|
D

AWS Lambda

Entry point

d

Parallel execution

£

AWS Step Functions
Detector 1

Compute unit

&=

AWS Step Functions
Detector 2

Compute unit

D

AWS Lambda
Result aggregation

Aggregated detection
results

Amazon S3
audio/video
buffers bucket

Audio/video
stream

Amazon ECS task

Start New
conversion audio/video
buffer

Customer

Start
analysis

Amazon SNS
The customer’s real-time
notification topic

Real-time detection
results

!

Media Converter

Audio/video
buffers

Detection

Detector 1

Detector 2

audio/video buffer

Analyze

New detection
result

Aggregated detection ()
Result B results >
aggregation
Amazon $3
detection

results bucket

A\

7 levels.fyi

WRITE PATH

AEAD PATH

Levels.fyi

Add salary

Levels.fyi

Fetch json files

‘ Salary submission |
APl Gateway ~———> vy
‘ ‘ Lambda
Build json files
| Fetch salaries “
JSON chef Lambda ———————>
Update json files
cache miss
CDN S3

_

———==> Google Sheet

—

i

Google Sheet

A\

NETFLIX

@@Lz
- 7
<

mysSaL
Biling info

-

L a.
CHUKWA a-w EMR
s3 Amazon tMR » managed

R
Hadoop framework

Elastic
search

()
g oo -

Apache Samza

EVENT PROCESSING / AGG / Monitor

BN

Tips for Building

How should we architect a truly elastic system?

Start simple Stay simple
e Prioritise simplicity e Do enough architecture each time
(frequently)

o Problem decomposition is key
e Allocate time to evolve your architecture

o Minimise mismatch between
and scale JIT

problem space and solution domain

. . e Beready to discard obsolete elements
o Clear boundaries/componentize

from the onset
e Prioritise correctness

o |Invest in end-to-end tests

A\

How should we architect a truly elastic system?

Be data-led Understand tradeoffs

e [nvestin system observability to °
understand the internals

e |et the data direct your scaling
investments °

e Many “legacy” stacks are still fast enough

Be sure what you're getting is better than
what you’re giving up. There are no
zero-cost abstractions in large systems

Ensure every component pays its rent
Physics will hold you back

At really large scale, you will need
“specialist” interventions

A\

How should we architect a truly elastic system?

Data, data, data

e Data Access/Storage will probably be your biggest
headache

e Eventual consistency is not a feature
e ACID Transactions are still incredibly valuable

e Solving Distributed Transactions is HARD!

A\

Takeaways

1. Understand where best practices apply
2. Prove correctness before scale

3. Scale thoughtfully and just-in-time

4. Maximize work not done

5. Always ask "Why?" and then "Why not?"

