
Trends in
Cloud-Native
Performance & Efficiency

@melaniecebula

This talk contains my personal views, and is not about my employer or my
employer’s views.

This talk contains predictions and speculation, which could be wrong.

@melaniecebula

Disclaimers:

● Overview
● Hardware in the Cloud

○ Processors, Memory, Disk
○ Pricing
○ Instance Sizing

● OS, Kernel, & JVM
● Schedulers & Containers
● Perf Tools
● Networking in the Cloud

○ Service Mesh, eBPF

@melaniecebula

Agenda

What is Cloud-Native?

@melaniecebula

What is Performance & Efficiency?

Virtual Server

Host OS

K8s Pod

Container OS

Application Code

Libraries & Frameworks
Performant Application Code

Profiling & Tooling

K8s HPA Tuning

JVM & Kernel Tuning

Modern Frameworks & SW

Modern OS, Kernel, and HW

Scheduling, Cluster Autoscaling & Binpacking

HW Capabilities

HW

SW

@melaniecebula

@melaniecebula

Cloud-native changes everything

Running compute as a distributed system with
containerized multi-tenant workloads has a huge
impact on how you approach performance & efficiency
work.

Hardware in the Cloud

Processors, Memory,
Disk

● Intel Xeon:
𐆑 2022: Ice Lake
𐆑 Late 2022/2023: Sapphire Rapids

○ Google announced system-on-chip (SoC) with custom Intel
infrastructure processing unit (IPU)

● AMD:
𐆑 2022: 3rd-gen AMD EPYC “Milan”
𐆑 2023: 4th-gen AMD EPYC “Genoa”

● Ampere ARM-based processors:
𐆑 2022: Altra @ Google, Microsoft Azure
𐆑 AmpereOne

Trend: New Processors in the Cloud

@melaniecebula

Trend: Custom processors in the Cloud

● “Systems on Chip” (SoC)
design
𐆑 Build vs Buy:

○ CPU, TPU, IPU
● Amazon ARM (Graviton 3)
● Ampere Altra Cloud Native

Processors (ARM)
● Google Intel Xeon Sapphire

Rapids with custom IPU

AMD ARM Intelvendor

GOOG Azure AWScustom

@melaniecebula

processor CPU TPU IPU

Trend: Rise of ARM
The rise of arm64 and SoC

@melaniecebula

Trend: Cloud processors target Efficiency

● Cloud-provider specific optimizations (e.g. “secret sauce”)
● Custom Chips for Cloud -> Custom Chips for Cloud Native
● Optimized based on Microservices, Schedulers, Containers,

etc
𐆑 Microservices spend a lot of time in I/O

● Efficiency > performance
𐆑 ARM
𐆑 Intel p cores and e cores

@melaniecebula

● Price
● Performance
● Efficiency
● Also:

𐆑 Architecture

Trend: More CPU Choices

Perf

Price

@melaniecebula

What are you
optimizing for?

● Many workloads are actually memory I/O bound
● DDR5 (Double Data Rate 5) is a big deal

𐆑 Advertised 50% better bandwidth
● Which processors have it?

𐆑 AWS / Graviton3 (GA) first cloud processor to have DDR5
𐆑 AMD Genoa
𐆑 AmpereOne

Trend: Microservices & Memory

@melaniecebula

● NVMe 2.0 (Non-Volative Memory Express)
𐆑 Improved throughput, IOPS

● PCIe 5.0 (Peripheral Component Interconnect Express)
𐆑 Improved Speed & Bandwidth

● Coming Soon!
● Also: Block Storage has improved

Trend: IOPS-heavy Services & Storage

@melaniecebula

Pricing

Pricing & Availability Guarantees

Availability

Price

Spot

Reserve

● Different tiers of pricing
𐆑 On-Demand: Pay as You Go
𐆑 Reserve: Pay up Front & Save
𐆑 Spot: Save on Extra Capacity,

But No Guarantees

On-Demand

@melaniecebula

Trend: Solving for excess (or lack of) capacity

Availability

Price

Spot

Reserve

● The overall trend is the all cloud
providers now have a solution for
excess capacity

● Market Dynamics (e.g. Azure’s
evict at your set price)

On-Demand

@melaniecebula

● What are you optimizing
for?
𐆑 Absolute _?

● More likely:
𐆑 Pay for performance

& availability where
you need it

𐆑 Save on costs with
price/performance
(e.g efficiency) where
you don’t

Trend: Performance, Price, and Availability

@melaniecebulaAvailability

Price

Performance

Instance Sizing

Instance Sizing: Vertical vs Horizontal Scaling

Virtual
Machine Virtual

Machine...

Virtual
Machine
MEM
CPU

Vertical scaling:
increasing resources
of an existing
instance(s)

Horizontal scaling:
increasing number
of instances

@melaniecebula

Horizontally scaling in the cloud

Virtual
Machine
MEM
CPU

Vertical scaling:
increasing resources
of an existing
instance(s)

● Limits on Vertical scaling (capped
VM sizes)

● Larger instances have
multi-socket costs (NUMA)

● Why pay it?
𐆑 Use 2 single-socket

instances instead of 1
two-socket instance

● Horizontally scale instead!

@melaniecebula

But in K8s, there’s also Overhead

K8s Node
Daemons
System Pods
Agents

Scheduling Overhead:
Resources used per
instance by scheduling
logic.

● If instance overhead is high
enough, you may want to
vertically scale as much as you
can

● Minimize overhead, vertically
scale, then horizontally scale

@melaniecebula

And Cluster Overhead

Scheduling Overhead:
Resources used per cluster
by scheduling logic.

● Clusters themselves also have
per-cluster overhead
𐆑 Not to mention operational

overhead
● “Vertically scale” each cluster

until you hit the max number of
instances

● “Horizontally scale” by adding
another cluster

K8s Node K8s Node...

Horizontal scaling:
increasing number
of clusters

@melaniecebula

● Before: Optimize the instance for the workload
● Now: Multiple tenants per instance
● New problems:

𐆑 Resource contention
𐆑 Scheduling challenges
𐆑 Binpacking

Hardware & Multi-Tenancy

@melaniecebula

K8s

Pod Pod...
Pod
MEM
CPU

Vertical scaling:
increasing resources
of an existing pod(s)

Horizontal scaling:
increasing number
of pods

@melaniecebula

Example: Inefficient Binpacking

K8s node:
MEM: 32GiB
CPU: 16 vCPU

Pod
MEM: 16 GiB
CPU: 4 vCPU

Node

Pod

Pod
MEM: 16 GiB
CPU: 4 vCPU

@melaniecebula

Example: Inefficient Binpacking

K8s node:
MEM: 32GiB
CPU: 16 vCPU

Pod
MEM: 16 GiB
CPU: 4 vCPU

Node

Pod
MEM: 16 GiB
CPU: 4 vCPU

100%
MEM

Node
Utilization

50%
CPU

Pod

Example: Efficient Binpacking

K8s node:
MEM: 32GiB
CPU: 8 vCPU

Pod
MEM: 16 GiB
CPU: 4 vCPU

Node

Pod
MEM: 16 GiB
CPU: 4 vCPU

100%
MEM

Node
Utilization

100%
CPU

Pod

● Requirements:
𐆑 Resources (CPU, MEM,

GPU, Storage)
𐆑 Architecture

● Optimizations:
𐆑 Price
𐆑 Performance
𐆑 Availability
𐆑 Sizing

Which HW should you use?

@melaniecebula

OS, Kernel, & JVM

● Cloud-specific OS’ based off
open-source OS’s
𐆑 e.g. AL2, AL2022,

Container-Optimized OS
(COS)

● Clouds offer open-source OS’s
too
𐆑 e.g. Ubuntu, RHEL, Fedora,

Debian

Trend: custom cloud OS

reference: https://aws.amazon.com/linux/amazon-linux-2022
reference: https://cloud.google.com/container-optimized-os/docs/concepts/features-and-benefits @melaniecebula

https://aws.amazon.com/linux/amazon-linux-2022
https://cloud.google.com/container-optimized-os/docs/concepts/features-and-benefits

● Container-optimized
● Slimmer
● Distroless

𐆑 Application & runtime deps
only

𐆑 No package managers
𐆑 No shell access

Trend: container OS optimizations

reference: https://freesvg.org/whale-animation @melaniecebula

https://freesvg.org/whale-animation

● Distroless (no shell access),
container hardening (non-root)

● Some perf tools are not
“container aware”

● Debugging must evolve
○ e.g. with ephemeral

containers for profiling

Trend: Secure Profiling & Debugging
In a Container World

reference: https://kubernetes.io/docs/concepts/workloads/pods/ephemeral-containers/ @melaniecebula

● New features & perf improvements
○ Optimizations for new processors
○ BPF improvements
○ Improved write perf, throughput, better compatibility with

storage devices
○ MultiPath TCP
○ PSI
○ io_uring (for I/O- bound workloads)

Kernel Improvements
5.10

@melaniecebula

● 5.15
○ New standard for latest Cloud OS’s
○ Continued HW improvements (Intel Alder Lake, AMD)
○ I/O improvements

● 5.19
○ Many Intel & AMD improvements
○ Networking improvements (io_uring)

● 6.0
○ Improved NUMA balancing
○ Improved behavior in both reduced-capacity (load

balancing) and spare capacity (idle CPU behavior)
○ Improved core scheduling

Kernel Improvements
5.15+

@melaniecebula

● Java 11
○ ZGC
○ Parallel full G1GC
○ Low-overhard heap profiling
○ GC adaptive thread scaling
○ JMH JDK microbenchmarks

● Java 15
○ ZGC production-ready

● Java 17
○ Vector API
○ Parallel GC improvements
○ Perf improvements incl. G1

and ZGC
● Java 18/19

○ Light on perf / preview mode

JVM Improvements

@melaniecebulareference: https://freesvg.org/java

Schedulers &
Containers

● Containers are implemented
with cgroups

● Pressure Stall Information (PSI)
○ Identifies and quantifies

disruptions caused by all
resources crunches

○ Avoid OOM kills!
● Better resource allocation and

isolation

Trend: better container resource handling
Cgroup v2

@melaniecebula

● Specifications (OCI, CRI) for
containers and container
runtimes

● Docker being replaced by other
tools
○ K8s replace Docker

Daemon with CRI-O
○ New tools (Podman,

Buildah) for building &
running OCI containers

Trend: “Dockerless”

@melaniecebulareference: https://podman.io/
reference: https://buildah.io/

https://podman.io/
https://buildah.io/

● Docker backend -> replaced by
Buildkit

● Docker frontend (Dockerfile) ->
replaced by custom image
definition frontend?
○ More control over

abstractions (OS, arch,
packages)

Trend: “Dockerless”

@melaniecebula

● Advent of microVMs
● Fast start time (similar to

containers)
● Fast performance (similar to

HW)
● Dedicated kernels, better

security, better resource
isolation

Trend: (Lightweight) VMs are cool again?
E.g. AWS Firecracker

@melaniecebulareference: https://freesvg.org/virtual-machine-host

● Can you use VMs if you’re using
K8s?

● Actually, yes!
● Sysbox, container runtime that

supports running VM workloads
in VM-approximate containers

Trend: “VM support” in schedulers

@melaniecebulareference: https://github.com/nestybox/sysbox

Perf Tooling

Perf Tooling
Flamegraphs

reference: https://commons.wikimedia.org/wiki/File:MediaWiki_flame_graph_screenshot_2014-12-15_22.png

Trend: continuous -> automated analysis?
Continuous Profiling and Analysis

@melaniecebulareference: https://github.com/Netflix/flamescope

Next Gen Perf Tooling
bpftrace

@melaniecebulareference: https://github.com/iovisor/bpftrace

Prediction: all-in-one cloud debugging tool?

@melaniecebulareference: https://github.com/iovisor/bpftrace

● The biggest issue with all these tools is none of them “zoom out” and “drill
down” across layers

● Layers: Application, Container, Scheduler, OS, Kernel, HW, etc.
● More complexity than ever in the cloud
● Debugging is time-consuming and expensive

Networking in the
Cloud

Service Mesh

● Service-to-Service
communication moved
outside of applications

● Avoids language-specific
libraries!

@melaniecebula

Service Mesh

● Performance:
𐆑 Rightsizing proxies for

CPU/MEM
𐆑 Depends on size of

configuration state
(e.g. number of
listeners, clusters, and
routes)

@melaniecebula

Sidecars

● General problem:
𐆑 As shared concerns

are moved into
sidecar containers

𐆑 Sidecar resource
footprint is significant

K8s node

Java App Pod

Main Java

Service discovery

Service Proxy

Instrumentation

Logging

Metrics

Dynamic Config

Translations

Node

Main Java Pod

Main Java Container

Sidecar Containers

@melaniecebula

Trend: Use eBPF for networking… or another model

● eBPF:
𐆑 Allows applications to

do certain types of
work in the kernel

𐆑 Potential for network,
security, observability
usecases

𐆑 Way better
performance

𐆑 But, harder to write &
reason about

● eBPF in the CNI too!

@melaniecebula

Summary

1. Custom Cloud Hardware
a. SoC, Rise of ARM, targeting efficiency

2. Era of CPU Choice
a. Price, Performance, Availability, Sizing, Architecture

3. Microservices change resource requirements & scaling considerations
4. Multi-tenancy & clusters introduce challenges

a. resource contention and binpacking efficiency
5. Custom Cloud OS, Container-optimized OS, and Distroless
6. Cgroups v2 & Kernel

a. better resource contention & isolation (PSI)
7. “Dockerless” trend

a. container runtime, builds, interface
8. Lightweight VM offerings & integration into schedulers
9. Continuous Profiling and analysis towards more automation and all-in-one debugging

10. eBPF or another model will change networking in the cloud

@melaniecebula

Thank you.

@melaniecebula

