
To Kill It With Fire, Or 
Not to Kill It With Fire?

Laura Nolan, Slack
Twitter: @lauralifts



About This Talk

This talk is about assessing our options 
when we’re running a software system 
that has issues (cost, stability, 
excessive toil).



Options

● Turndown
● Migration 
● In-Place Modernisation
● Do Nothing and Live With It



TL;DR: IT DEPENDS
This is a 
high-consequence type 
of decision, that can 
shape the work of teams 
for years and have 
effects all throughout an 
organisation.



Case Study: Photon

● A successful migration from a 
single-homed data pipeline to a 
multi-homed fault tolerant architecture

● Desired goals could not be achieved with 
existing architecture

● Users were not impacted during migration
● Team was staffed adequately
● TOIL went down, reliability increased

https://research.google/pubs/pub41318/



● Sisyphus is a release workflow 
management system at Google

● For years, a deprecation effort failed to gain 
momentum

● Many teams had made large investments in 
Sisyphus (customized Python plugins) 
which were impossible to automatically 
migrate to any of the proposed 
replacement systems

https://sre.google/sre-book/release-engineering/

Case Study: Sisyphus Deprecation



● Successful replacement of one OSS proxy 
with another, with goal of increasing 
operability and reliability and accessing 
Envoy-specific features

● Team had sufficient staffing and time
● Impact on users and other teams was 

minimal
● Gradual migration mitigated risk
● Goals of migration were met

Case Study: HAProxy to Envoy 
Proxy

https://slack.engineering/migrating-millions-of-concurrent-websockets-to-envoy/



● The Consul service discovery system uses 
a protocol called MsgPack

● It recently added support for gRPC 
streaming for certain blocking read 
operations which can consume high 
bandwidth

● With gRPC streaming, a ‘diff’ can be 
transmitted, rather than the entire dataset

● This is an effective modernisation-in-place 
to increase scalability

Case Study: gRPC Streaming in 
Consul

https://www.consul.io/docs/release-notes/1-9-0



1. Ask a question
2. Gather relevant facts and 

perspectives
3. Articulate your principles
4. Consider how problems 

may be mitigated
5. Make the decision

How To Make Difficult Choices



The Question

This is probably the easiest step. Your 
question is something like ‘should we 
replace Foobar System?’



Relevant Facts 
and Perspectives

May include:

● Problems with current system
● Feasible alternatives and gap 

analyses
● Team capacity
● Opportunity costs
● Organisational capacity and 

ongoing major migrations
● Impact on users 
● Risk of migration



Articulate Your 
Principles

Examples:

● Team workloads should be 
sustainable

● Systems should not be toilsome
● Users should not be impacted
● An organisation should limit 

technical churn and risk



Consider 
Mitigations

Examples:

● Prototyping or proof of concepts
● Additional staffing
● Tooling to automate migration 

processes or toil of existing 
system

● Careful planning of migrations to 
reduce risks 



Make the Decision

● Clearly document the 
rationale

● Get people on board
● Revisit if the facts or 

the principles change



Turndowns and migrations are 
big and impactful decisions. 

Don’t underestimate how long 
migrations and turndowns take 
and how costly they are.

Gather facts and perspectives, 
articulate your values, consider 
mitigations, and make a 
decision.

Conclusions


